Skip to main content

Advertisement

Log in

Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil losses must be quantified over watersheds in order to set up protection measures against erosion. The main objective of this paper is to quantify and to map soil losses in the Wadi Sahouat basin (2140 km2) in the north-west of Algeria, using the Revised Universal Soil Loss Equation (RUSLE) model assisted by a Geographic Information System (GIS) and remote sensing. The Model Builder of the GIS allowed the automation of the different operations for establishing thematic layers of the model parameters: the erosivity factor (R), the erodibility factor (K), the topographic factor (LS), the crop management factor (C), and the conservation support practice factor (P). The average annual soil loss rate in the Wadi Sahouat basin ranges from 0 to 255 t ha−1 year−1, maximum values being observed over steep slopes of more than 25% and between 600 and 1000 m elevations. 3.4% of the basin is classified as highly susceptible to erosion, 4.9% with a medium risk, and 91.6% at a low risk. Google Earth reveals a clear conformity with the degree of zones to erosion sensitivity. Based on the soil loss map, 32 sub-basins were classified into three categories by priority of intervention: high, moderate, and low. This priority is available to sustain a management plan against sediment filling of the Ouizert dam at the basin outlet. The method enhancing the RUSLE model and confrontation with Google Earth can be easily adapted to other watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achite, M., & Meddi, M. (2004). Estimation du transport solide dans le bassin-versant de l’oued Haddad (Nord-Ouest algérien). Sécheresse, 15(4), 367–373.

    Google Scholar 

  • Achite, M., & Meddi, M. (2005). Variabilité spatio-temporelle des apports liquides et solide en zone semi-aride. Cas du bassin versant de l’oued Mina (nord-ouest algérien). Revue des Sciences de l’Eau, 18, 37–56.

    Article  Google Scholar 

  • Achite, M., & Ouillon, S. (2016). Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010). Hydrology of Earth System Sciences, 20, 1355–1372 https://doi.org/10.5194/hess-20-1355-2016.

    Article  Google Scholar 

  • Alekseevskiy, N. I., Berkovich, K. M., & Chkalov, R. S. (2008). Erosion, sediment transportation and accumulation in rivers. International Journal of Sediment Research, 23, 93–105. https://doi.org/10.1016/S1001-6279(08)60009-8.

    Article  Google Scholar 

  • Balasubramani, K., Veena, M., Kumaraswamy, K., & Saravanabavan, V. (2015). Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (rusle) model through GIS. Modeling Earth Systems and Environment, 1(2), 10. https://doi.org/10.1007/s40808-015-0015-4.

    Article  Google Scholar 

  • Bayramin, I., Basaran, M., Erpul, G., & Canga, M. R. (2008). Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey. Environmental Monitoring and Assessment, 140, 249–265. https://doi.org/10.1007/s10661-007-9864-2.

    Article  Google Scholar 

  • Benchettouh, A., Kouri, L., & Jebari, S. (2017). Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences, 10, 79. https://doi.org/10.1007/s12517-017-2875-6.

    Article  Google Scholar 

  • Benkadja, R., Boussag, F., & Benkadja, A. (2015). Identification et évaluation du risque d’érosion sur le bassin versant du K’sob (Est Algérien). Bulletin of Engineering Geology and the Environment, 74, 91–102. https://doi.org/10.1007/s10064-014-0611-y.

    Article  Google Scholar 

  • Biswas, S. S., & Pani, P. (2015). Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar River basin, Jharkhand, India. Modeling Earth Systems and Environment, 1, 42. https://doi.org/10.1007/s40808-015-0040-3.

    Article  Google Scholar 

  • Blanco, H., & Lal, R. (2010). Principles of soil conservation and management. Dordrecht, ISBN 978-1-4020-8708-0: Springer. https://doi.org/10.1007/978-1-4020-8709-7.

    Book  Google Scholar 

  • Chadli, K. (2016). Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Modeling Earth Systems and Environment, 2, 51. https://doi.org/10.1007/s40808-016-0105-y.

    Article  Google Scholar 

  • Chatterjee, S., Krishna, A. P., & Sharma, A. P. (2014). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences, 71, 357–374. https://doi.org/10.1007/s12665-013-2439-3.

    Article  Google Scholar 

  • Chen, H., Teng, Y., & Wang, J. (2013). Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: a case study in the Jinjiang River, China. Environmental Monitoring and Assessment, 185, 2009–2021. https://doi.org/10.1007/s10661-012-2684-z.

    Article  CAS  Google Scholar 

  • Coyne and Bellier (1980). Barrage Es Saada sur l’oued Mina, Consignes d’exploitation. Technical report, “Coyne et Bellier” consulting and engineering company, Paris.

  • Dabral, P. P., Baithuri, N., & Pandey, A. (2008). Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management, 22(12), 1783e1798. https://doi.org/10.1007/s11269-008-9253-9.

    Article  Google Scholar 

  • De Jong, S. M., Paracchini, M. L., Bertolo, F., Folving, S., Megier, J., & de Roo, A. P. J. (1999). Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena, 37(3–4), 291–308. https://doi.org/10.1016/S0341-8162(99)00038-7.

    Article  Google Scholar 

  • De Roo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins, I: Theory, input and output. Hydrological Processes, 10(8), 1107–1117. https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4.

    Article  Google Scholar 

  • de Vente, J., & Poesen, J. (2005). Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Science Reviews, 71, 95–125. https://doi.org/10.1016/j.earscirev.2005.02.002.

    Article  Google Scholar 

  • Diodato, N. (2004). Estimating Rusle’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrology and Earth System Sciences, 8, 103–107. https://doi.org/10.5194/hess-8-103-2004.

    Article  Google Scholar 

  • Diodato, N. (2005). Geostatistical uncertainty modelling for the environmental hazard assessment during single erosive rainstorm events. Environmental Monitoring and Assessment, 105, 25–42. https://doi.org/10.1007/s10661-005-2815-x.

    Article  Google Scholar 

  • Dubreuil, P., & Guiscafre, J. (1971). La planification du réseau hydrométrique minimal. Cahiers ORSTOM, Série Hydrologie, VIII(2), 3–37.

    Google Scholar 

  • Dutta, D. (2016). Soil erosion, sediment yield and sedimentation of reservoir: a review. Modeling Earth Systems and Environment, 2, 123, https://doi.org/10.1007/s40808-016-0182-y.

  • Dutta, D., Das, S., Kundu, A., & Taj, A. (2015). Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE Model and TRMM data. Modeling Earth Systems and Environment, 1, 37. https://doi.org/10.1007/s40808-015-0034-1.

    Article  Google Scholar 

  • El-Mahi, A., Meddi, M., & Bravard, J. P. (2012). Analyse du transport solide en suspension dans le bassin versant de l’Oued El Hammam (Algérie du Nord). Hydrological Sciences Journal, 57(8), 1642–1661. https://doi.org/10.1080/02626667.2012.717700.

    Article  Google Scholar 

  • ESRI. (2000). Model builder for arcview spatial analyst 2. Redlands: ESRI Press.

    Google Scholar 

  • FAO/IIASA/ISRIC/ISS-CAS/JRC. (2009). Harmonized world soil database (version 1.1). Rome: FAO.

    Google Scholar 

  • Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Negussie, A. (2016). Dynamics of soil erosion as influenced by watershed management practices: a case study of the Agula watershed in the semi-arid highlands of northern Ethiopia. Environmental Management, 58, 889–905. https://doi.org/10.1007/s00267-016-0757-4.

    Article  Google Scholar 

  • Ferreira, V., Panagopoulos, T., Cakulab, A., Andradea, R., & Arvela, A. (2015). Predicting soil erosion after land use changes for irrigating agriculture in a large reservoir of southern Portugal. Agriculture and Agricultural Science Procedia, 4, 40–49. https://doi.org/10.1016/j.aaspro.2015.03.006.

    Article  Google Scholar 

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS—a case study of Nethravathi Basin. Geoscience Frontiers, 7, 953–961. https://doi.org/10.1016/j.gsf.2015.10.007.

    Article  Google Scholar 

  • Gaubi, I., Chaabani, A., Ben Mammou, A., & Hamza, M. H. (2017). A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86, 219–239. https://doi.org/10.1007/s11069-016-2684-3.

    Article  Google Scholar 

  • Gay, M., Cheret, V., & Denux, J. P. (2002). Apport de la télédétection dans l’identification du risque d’érosion. La Houille Blanche, 1(81), 86.

    Google Scholar 

  • Giandotti, M. (1937). Idrologia, Florence (IT): Barbera Edizioni.

  • Goodchild, M. F. (2005). GIS, spatial analysis and modeling overview. In D. J. Maguire, M. Batty, & M. F. Goodchild (Eds.), GIS, spatial analysis, and modeling (pp. 1–18). Redlands: ESRI Press.

    Google Scholar 

  • Hamza, M. H., Added, A., Rodrigue, R., Abdeljaoued, S., & Ben Mammou, A. (2007). A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf Aquifer, Northern Tunisia). Journal of Environmental Management, 84, 12–19. https://doi.org/10.1016/j.jenvman.2006.04.004.

    Article  CAS  Google Scholar 

  • Hermassi, T., Cherif, M. A., & Habaieb, H. (2014). Etude du transport solide au niveau du bassin versant de Merguellil, Tunisie centrale : cas des bassins versants d’Ettiour et de Rajela. La Houille Blanche, 4, 88–96.

    Article  Google Scholar 

  • Ismail, J., & Ravichandran, S. (2008). RUSLE2 model application for soil erosion assessment using remote sensing and GIS. Water Resources Management, 22, 83–102. https://doi.org/10.1007/s11269-006-9145-9.

    Article  Google Scholar 

  • Jain, S. K., Kumar, S., & Varghese, J. (2001). Estimation of soil erosion for a Himalayan watershed using GIS technique. Water Resources Management, 15(1), 41e54. https://doi.org/10.1023/A:1012246029263.

    Article  Google Scholar 

  • Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57, 483–497. https://doi.org/10.1007/s00254-008-1318-9.

    Article  Google Scholar 

  • Kumar, S., & Kushwaha, S. P. S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science, 122, 389–398. https://doi.org/10.1007/s12040-013-0276-0.

    Article  Google Scholar 

  • Kumar, A., Devi, M., & Deshmukh, B. (2014). Integrated remote sensing and geographic information system based RUSLE modelling for estimation of soil loss in Western Himalaya, India. Water Resources Management, 28, 3307–3317. https://doi.org/10.1007/s11269-014-0680-5.

    Article  Google Scholar 

  • Lang, S. S. (2006). Slow insidious soil erosion threatens human health and welfare as well as the environment, Cornell study by asserts chronicle online. USA: Cornell University.

    Google Scholar 

  • Lin, C. Y., Lin, W. T., & Chou, W. C. (2002). Soil erosion prediction and sediment yield estimation: the Taiwan experience. Soil & Tillage Research, 68(2), 143–152. https://doi.org/10.1016/S0167-1987(02)00114-9.

    Article  Google Scholar 

  • Lobo, G. P., & Bonilla, C. A. (2015). Effect of temporal resolution on rainfall erosivity estimates in zones of precipitation caused by frontal systems. Catena, 135, 202–207. https://doi.org/10.1016/j.catena.2015.08.002.

    Article  Google Scholar 

  • Manegold, J. (2003). Using the Model Builder of ArcGIS 9 for landscape modeling. In: Buchmann E, Ervin S (eds) Trends in landscape modeling. Proceedings at Anhalt University of Applied Sciences. Wichmann, Heidelberg, 240–245 pp.

  • Markhi, A., Laftouhi, N. E, Soulaimani, A., & Fniguire, F., (2015). Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrés dans un SIG. Application dans le bassin versant n’fis dans le haut atlas de Marrakech (Maroc). European Scientific Journal, 11(29), ISSN: 1857–7881.

  • Markose, V. J., & Jayappa, K. S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188, 225 https://doi.org/10.1007/s10661-016-5218-2.

    Article  Google Scholar 

  • Moore, I. D., & Burch, G. J. (1986). Physical basis of the length slope factor in the universal soil loss equation. Soil Science Society of America Journal, 50(5), 1294–1298.

    Article  Google Scholar 

  • Morgan, R.P.C. (2005). Soil erosion and conservation third ed. Blackwell Science Ltd., 304ISBN: 1-4051-1781-8.

  • Morsli, B., Habi, M., Mazour, M., Hamoudi, A., & Halitim, A. (2012). Erosion et ruissellement en montagnes méditerranéennes d’Algérie du Nord: analyse des facteurs conditionnels sous pluies naturelles et artificielles. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 1, 33–40.

    Google Scholar 

  • Mostephaoui, T., Merdas, S., Sakaa, B., Hanafi, M. T., & Benazzouz, M. T. (2013). Cartographie des risques d’érosion hydrique par l’application de l’équation universelle de pertes en sol à l’aide d’un système d’information géographique dans le bassin versant d’el Hamel (Boussaâda), Algérie. Journal Algérien des Régions Arides. N° Spécial, 131–147.

  • Naqvi, R. H., Mallick, J., Devi, L. M., & Siddiqui, M. A. (2013). Multi-temporal annual soil loss risk mapping employing Revised Universal Soil Loss Equation (RUSLE) model in Nun Nadi Watershed, Uttrakhand (India). Arabian Journal of Geosciences, 6, 4045–4056. https://doi.org/10.1007/s12517-012-0661-z.

    Article  Google Scholar 

  • Ouechtati, S., & Baldassare, G. (2011). Evaluation du transport solide et de l’envasement dans le bassin versant de Siliana (Tunisie): cas des barrages Siliana et Lakhmess. Bulletin of Engineering Geology and the Environment, 70(4), 709–722. https://doi.org/10.1007/s10064-011-0376-5.

    Article  Google Scholar 

  • Pan, J., & Wen, Y. (2014). Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Natural Hazards, 71, 2187–2205. https://doi.org/10.1007/s11069-013-1006-2.

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015a). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012.

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Meusburger, K., Zanden, A. H., Poesen, J., & Alewell, C. (2015b). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23–34. https://doi.org/10.1016/j.envsci.2015.03.012.

    Article  Google Scholar 

  • Parveen, R., & Kumar, U. (2012). Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel basin, Jharkhand. Journal of Geographic Information System, 4, 588–596. https://doi.org/10.4236/jgis.2012.46061.

    Article  Google Scholar 

  • Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, Development and Sustainability, 8, 119–137. https://doi.org/10.1007/s10668-005-1262-8.

    Article  Google Scholar 

  • Pimentel, D. C., & Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems, 1, 104–123. https://doi.org/10.1007/s100219900035.

    Article  Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., Mcnair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123. https://doi.org/10.1126/science.267.5201.1117.

    Article  CAS  Google Scholar 

  • Pitaud, G. (1973) Etude hydrogéologique pour la mise en valeur de la vallée de l’oued Saїda (rapport de synthèse), division ressource hydrique.

  • Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215. https://doi.org/10.1016/j.gsf.2011.11.003.

    Article  Google Scholar 

  • Remini, B., Hallouche, W., & Achour, B. (2009) L’Algérie : Plus d’un siècle d’envasement des barrages. Chapitre 8. Etat des ressources en eau du Maghreb, UNESCO, 123–142.

  • Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157, 287–306. https://doi.org/10.1016/0022-1694(94)90110-4.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Wessies, G. A., & Porter, J. P. (1991). Revised universal soil loss equation. Journal of Soil and Water Conservation, 46, 30–33.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Washington, DC: USDA Agricultural Research Services, Agriculture handbook no, 703.

    Google Scholar 

  • Renard, K. G., Yoder, D., Lightle, D., & Dabney, S. (2011). Universal soil loss equation and revised universal soil loss equation, Handbook of erosion modelling (pp. 137–167). Oxford: Blackwell Publ.

    Google Scholar 

  • Roche, M. (1963). Hydrologie de Surface. Paris: Gauthier-Villars Editeur 429 p.

    Google Scholar 

  • Roose, E., Chebbani, R., & Bourougaa, L. (2000). Ravinement en Algérie. Typologie, facteurs de contrôle, quantification et réhabilitation. Sécheresse, 11(4), 317–326.

    Google Scholar 

  • Sadiki, A., Faleh A., Zêzere J.L., & Mastass, H. (2009). Quantification de l’érosion en nappes dans le bassin versant de l’oued Sahla Rif central Maroc. Cahiers Géographiques, n°6/2009, 59–70.

  • Singh, G., Chandra, S., & Babu, R. (1981). Soil loss and prediction research in India, Central Soil and Water Conservation Research Training Institute, Bulletin N°T-12/D9.

  • Stone, R. P., Hilborn, D. (2000). Équation universelle des pertes en Terre (USLE), Ministère de l’agriculture, de l’alimentation et des affaires rurales, Ontario. 08P.

  • Stone, R. P., & Hilborn, D. (2012). Universal soil loss equation (USLE) factsheet. Ontario: Ministry of Agriculture, Food and Rural Affairs.

    Google Scholar 

  • Toumi, S., Meddi, M., Mahé, G., & Brou, Y. T. (2013). Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrological Sciences Journal, 58(7), 1542–1558. https://doi.org/10.1080/02626667.2013.824088.

    Article  Google Scholar 

  • Tribak, A., El Garouani, A., & Abahrour, A. (2009). Evaluation quantitative de l’érosion hydrique sur les terrains marneux du Pré Rif oriental (Maroc): cas du sous-bassin de l’oued Tlata. Sécheresse, 20(4), 333–337.

    Google Scholar 

  • Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. Catena, 63(2–3), 132–153. https://doi.org/10.1016/j.catena.2005.06.001.

    Article  CAS  Google Scholar 

  • van der Knijff, J. M., Jones R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy, European Soil Bureau, Research Report EUR 19044 ENp, 58p.

  • van der Knijff J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe, European Soil Bureau Research Report EUR 19044 ENp, 34p.

  • Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., & Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94, 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003.

    Article  Google Scholar 

  • Walling, D. E. (1999). Linking land use, erosion and sediment yield. Hydrobiologia, 410, 223–240.

    Article  Google Scholar 

  • Walling, D. E., & Webb, B. W. (1996). Erosion and sediment yield: a global overview. IAHS Publ, 236, 3–19.

    Google Scholar 

  • Wang, W. Z. (1995). Study on rainfall erosivity in China. Journal of Soil and Water Conservation, 9(4), 5–18.

    Google Scholar 

  • Wang, G., Wente, S., Gertner, G. Z., & Anderson, A. (2002). Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat thematic mapper images. International Journal of Remote Sensing, 23, 3649–3667. https://doi.org/10.1080/01431160110114538.

    Article  Google Scholar 

  • Wilkinson, B. H., & McElroy, B. J. (2007). The impact of humans on continental erosion and sedimentation. GSA Bulletin, 119, 140–156. https://doi.org/10.1130/B25899.1.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses, USDA Agricultural Research Services Handbook 537. Washington, DC: USDA 57p.

    Google Scholar 

  • Yildirim, U. (2011). Assessment of soil erosion at the Deðirmen Creek watershed area, Afyonkarahisar, Turkey, In: Ayvaz M (ed), Proceedings of the International Symposium on Environmental Protection and Planning: Geographic Information Systems (GIS) and Remote Sensing (RS) Applications (ISEPP), 28–29 June 2011, Izmir, 73–80.

  • Zhang, W., Wei, X., Zheng, J., Zhu, Y., & Zhang, Y. (2012). Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Continental Shelf Research, 38, 35–46. https://doi.org/10.1016/j.csr.2012.02.017.

    Article  CAS  Google Scholar 

  • Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499–510. https://doi.org/10.1002/ldr.2246.

    Google Scholar 

  • Zhou, P., Luukkanen, O., Tokola, T., & Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75(3), 319–325. https://doi.org/10.1016/j.catena.2008.07.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrezak Kamel Toubal.

APPENDIX

APPENDIX

Appendix 1

Giandotti (1937) proposed to calculate the concentration time by:

$$ {T}_{\mathrm{c}}=\frac{4\sqrt{A}+\left(1,5{L}_{\mathrm{c}\mathrm{p}}\right)}{0,8\ \sqrt{H_{\mathrm{av}}-{H}_{\mathrm{min}}}} $$
(A1)

where Tc is the time concentration of the watershed (h), A is the watershed area (km2), Lcp is the length of the main stream (km), Hav is the mean altitude of the basin (m), and Hmin is the minimum altitude of the basin (m).

Appendix 2

The slope index of a drainage basin decreases with increasing basin area. It is thus difficult to compare the slope index of basins of different areas. For that purpose, Dubreuil and Guiscafre (1971) introduced the specific height difference (D s ), its name being originally “Dénivelé spécifique,” expressed (in m) and calculated by:

$$ {D}_{\mathrm{s}}={I}_{\mathrm{g}}\sqrt{A} $$
(A2)

where Ig is the global slope index (in %) and A the basin area (in km2). Appendix Table 13 indicates the ORSTOM classification of basin relief based on the specific height difference.

Table 13. Classification of relief based on Ds (Dubreuil and Guiscafre 1971)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toubal, A.K., Achite, M., Ouillon, S. et al. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria. Environ Monit Assess 190, 210 (2018). https://doi.org/10.1007/s10661-018-6580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6580-z

Keywords

Navigation