Skip to main content

Advertisement

Log in

Prediction of water erosion sensitive areas in Mediterranean watershed, a case study of Wadi El Maleh in north-west of Algeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water erosion phenomenon has significant effects on productivity and environment in Algeria. This contribution presents interesting study on soil erosion risk of Wadi El Maleh watershed using RUSLE model based on original data. The erosion process results from effects of several factors, including rainfall erosivity, soil erodibility, land slope length, land use, and conservation practices. Soil erosion map in the entire watershed area is obtained by the superposition of the generated maps of each previous factor. The obtained results showed that the mean soil loss rate is about 9 t/ha/year in the whole watershed area. These results are comparable to those reported in watersheds having the same hydrologic characteristic. Based on 2017 couples of (Q-C) recorded over 17 years (from 1981 to 1998), we have estimated the suspended sediment transport of Wadi El Maleh to be annually about 2.94 t/ha/year which represents just 32.6% of the eroded rate, i.e., two thirds of the eroded sediment are deposited, especially in the plains. This high values of deposited sediments is mainly due to relatively moderate slopes and dense vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achite M., & Meddi M. (2004). Estimation du transport solide dans le bassin-versant de l’oued Haddad (Nord-Ouest algérien), Science et changements planétaires / Sécheresse 15:367–373.

    Google Scholar 

  • Anache, J. A. A., Bacchi, C. G. V., Panachuki, E., & Alves Sobrinho, T. (2015). Assessment of methods for predicting soil erodibility in soil loss modeling. Geociências, 34, 32–40.

    Google Scholar 

  • Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems and Environment, 97, 295–308. https://doi.org/10.1016/S0167-8809(03)00011-2.

    Article  Google Scholar 

  • Arnoldus, H.M.J. (1980). Methodology used to determine the maximum potential average soil loss due to sheet and rill erosion in Morrocco, Bulletin F.A.O. 34.

  • Benchettouh, A., Kouri, L., & Jebari, S. (2017). Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences, 10. https://doi.org/10.1007/s12517-017-2875-6.

  • Bouguerra, H., Bouanani, A., Khanchoul, K., Derdous, O., & Tachi, S. E. (2017). Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the revised universal soil loss equation through GIS. Journal of Water and Land Development, 32, 13–23. https://doi.org/10.1515/jwld-2017-0002.

    Article  Google Scholar 

  • Chadli, K. (2016). Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Modeling Earth Systems and Environment, 2, 51. https://doi.org/10.1007/s40808-016-0105-y.

    Article  Google Scholar 

  • Djoukbala, O., Mazour, M., Hasbaia, M., & Benselama, O. (2018). Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environmental Earth Sciences, 77(9). https://doi.org/10.1007/s12665-018-7532-1.

  • Duarte, L., Teodoro, A. C., Gonçalves, J. A., et al. (2016). Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application. Environmental Monitoring and Assessment, 188. https://doi.org/10.1007/s10661-016-5349-5.

  • Elaloui, A., Marrakchi, C., Fekri, A., Maimouni, S., & Aradi, M. (2017). USLE-based assessment of soil erosionby water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment, 1–13. https://doi.org/10.1007/s40808-017-0340-x.

  • Fao, I., Rome, I.I. (2012). Harmonized World Soil Database, FAO, Rome,. FAO, Rome, Italy and IIASA, Laxenburg, Austria.

  • Fernández, C., & Vega, J. A. (2016). Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma, 273, 64–72. https://doi.org/10.1016/j.geoderma.2016.03.016.

    Article  Google Scholar 

  • Foster, G. R., Toy, T. E., & Renard, K. (2003). Comparison of the USLE, RUSLE1.06c, and RUSLE2 for application to highly disturbed lands. In First Interagency Conference on Research in Watersheds, October 27–30 (pp. 154–160). Washington, DC: United States Department of Agriculture.

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS—a case study of Nethravathi Basin. Geoscience Frontiers, 7, 953–961.

    Article  Google Scholar 

  • Gitas, I. Z., Douros, K., Minakou, C., & Silleos, G. N. (2009). Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. EARSeL eProceedings, 8, 40–52.

    Google Scholar 

  • Hallouz, F., Meddi, M., & Mahe, G. (2017). Régimes des matières en suspension dans le bassin versant de l’oued Mina sur l’oued Cheliff (Nord-Ouest Algérien). Houille Blanche, 61–71. https://doi.org/10.1051/lhb/2017034.

  • Hasbaia, M., Dougha, M., & Benjedou, F. (2017). Erosion sensitivity mapping using a multi-criteria approach under GIS environment the case of the semiarid Hodna Basin in Central Algeria. International Journal of Water Resources and Arid Environments, 6(1), 13–19.

    Google Scholar 

  • Kalman, R. (1967). Le facteur climatique de l’érosion dans le bassin de Sebou. Projet Sebou, Rapp. Inédit, p. 40.

  • Karamesouti, M., Petropoulos, G. P., Papanikolaou, I. D., Kairis, O., & Kosmas, K. (2016). Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: Comparison & implications. Geoderma, 261, 44–58. https://doi.org/10.1016/j.geoderma.2015.06.025.

    Article  Google Scholar 

  • Khosrowpanah, S., Heitz, L., Wen, Y., & Park, M. (2007). Developing a GIS-based soil erosion potential model of the UGUM watershed. Technical Report, no. 117. Mangilao: Water and Environmental Research Institute, University of GUAM.

  • Kumar, S., & Gupta, S. (2016). Geospatial approach in mapping soil erodibility using CartoDEM—A case study in hilly watershed of lower Himalayan range. Journal of Earth System Science, 125(7), 1463–1472.

    Article  CAS  Google Scholar 

  • MADR. (2011). Rapport du Ministère de l’Agriculture et du Développement rural. p. 85.

  • Markose, V. J, & Jayappa, K.S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188. https://doi.org/10.1007/s10661-016-5218-2.

  • Mazour, M. (1991). Les facteurs de risque de l’érosion en nappe dans le bassin versant d’isser Tlemcen Algérie, communication n 8, Grenoble, pp. 300–313.

  • Mazour, M., Roose, E. (2002). Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans des bassins versants du Nord-Ouest de 1’Algérie, pp. 320–330.

  • McCool, D. K., Foster, G. R., Renard, K., Yoder, D. C., & Weesies, G. A. (1995). The revised universal soil loss equation, Department of Defense/Interagency Workshop on Technologies to Address Soil Erosion on Department of Defense Lands San Antonio, TX, June 11–15.

  • Neitsch, S., Arnold, J., Kiniry, J., & Williams, J. (2011). Soil & water assessment tool theoretical documentation version 2009. Texas Water Resources Institute, 1–647. https://doi.org/10.1016/j.scitotenv.2015.11.063.

  • Ozsoy, G., & Aksoy, E. (2015). Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization. Environmental Monitoring and Assessment, 187, 1–14. https://doi.org/10.1007/s10661-015-4653-9.

    Article  Google Scholar 

  • Rango, A., & Arnoldus H.M.J. (1987). Aménagement des bassins versants (Watershedv management). Cahiers techniques de la FAO, pp. 1–11.

  • Rejani, R., Rao, K. V., Osman, M., Srinivasa Rao, C., Reddy, K. S., Chary, G. R., Pushpanjali, & Samuel, J. (2016). Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster. Environmental Monitoring and Assessment, 188, 1–16. https://doi.org/10.1007/s10661-016-5143-4.

    Article  CAS  Google Scholar 

  • Roose, E. J., & Lelong, F. (1976). Les facteurs de l’érosion hydrique en Afrique tropicale, étude sur petites parcelles expérimentales de sol. Revue de Géographie Physique et de Géologie Dynamique, XVIII(4), 365–374.

    Google Scholar 

  • Ryan, J. (1982). A perspective on soil erosion and conservation in Lebanon (publication n° 69, p. 68). Beyrouth: American University of Beirut.

  • Sadiki, A., Bouhlassa, S., Auajjar, J., Faleh, A., & Macair, J. J. (2004). Utilisation d’un SIG pour l’évaluation et la cartographie des risques d’érosion par l’Equation universelle des pertes en sol dans le Rif oriental (Maroc) : cas du bassin versant de l’oued Boussouab. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 26, 69–79. https://doi.org/10.19044/esj.2016.v12n32p277.

    Article  Google Scholar 

  • Semwal, P., Khobragade, S. D., & Nainwal, H. C. (2017). Modelling of recent Erosion rates in a Lake catchment in the North-Western Siwalik Himalayas. Environmental Processes, 4, 355–374. https://doi.org/10.1007/s40710-017-0234-y.

    Article  CAS  Google Scholar 

  • Siciliano, G. (2009). Social multicriteria evaluation of farming practices in the presence of soil degradation. A case study in southern Tuscany, Italy. Environment, Development and Sustainability, 11, 1107–1133. https://doi.org/10.1007/s10668-008-9169-9.

    Article  Google Scholar 

  • Tahiri, M., Tabyaoui, H., Tahiri, A., El Hadi, A., El Hammichi, F., & Achab, M. (2016). Modelling soil Erosion and sedimentation in the Oued Haricha Sub-Basin (Tahaddart Watershed, Western Rif, Morocco): risk assessment. Journal of Geoscience and Environment Protection, 4, 107–119. https://doi.org/10.4236/gep.2016.41013.

    Article  Google Scholar 

  • Toubal, A. K., Achite, M., Ouillon, S., & Dehni, A. (2018). Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, north-west of Algeria. Environmental Monitoring and Assessment, 190, 210. https://doi.org/10.1007/s10661-018-6580-z.

    Article  Google Scholar 

  • Toumi, S., Meddi, M., Mahé, G., & Brou, Y. T. (2013). Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrological Sciences Journal, 58, 1542–1558. https://doi.org/10.1080/02626667.2013.824088.

    Article  Google Scholar 

  • Vezena, K., & Bonn, F. (2006). Modélisation et analyse de la dynamique spatio-temporelle des relations société–érosion et pollution diffuse en milieu agricole. Etude de cas en Vietnam et au Québec. Interaction Nature–Société, analyse et modèles. UMR6554 LETG, La Baule.

  • Wall, G. J., Coote, D. R., Pringle, E. A., & Shelton, I. J. (2002). Revised universal soil loss equation for application in Canada: a handbook for estimating soil loss from water erosion in Canada. Agriculture and Agri-Food Canada. Res. Branch Ott. Contrib. No AAFCAAC2244E.

  • Warwade, P., Hardaha, M. K., & Kumar, D. (2014). Estimation of soil erosion and crop suitability for a watershed through remote sensing and GIS approach. Indian Journal of Agricultural Sciences, 84, 18–23.

    Google Scholar 

  • Wawer, R., Nowocieñ, E., & Podolski, B. (2005). Real and calculated K USLE erodibility factor for selected polish soils. Polish Journal of Environmental Studies, 14(5), 655–658.

    Google Scholar 

  • White, W.R. (1986). Problèmes d’érosion, transport solide et sédimentation dans les bassins versants, Projet 5.3 du programme hydrologique international. Paris: UNESCO, Etudes et rapports d’hydrologie no. 35. http://hydrologie.org/BIB/Publ_UNESCO/SR_035_F_1986.pdf. [accédé le 8 juillet 2013].

  • Williams, J. R. (1975). Sediment routing for agricultural watersheds. Water Resources Bulletin, 11(5), 965–974.

    Article  Google Scholar 

  • Williams, J. R., & Berndt, H. D. (1977). Sediment yield prediction based on watershed hydrology. Transactions of the American Society of Agricultural and Biological Engineers [online], 20(6), 1100–1104. https://doi.org/10.13031/2013.35710.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall erosion losses from cropland east of the Rocky Mountains [online]. In Agricultural Handbook 282 (p. 47). Brooksville: US Department of Agriculture - Agricultural Research Service.

  • Wischmeier, W. H., & Smith, D. D.(1978). Predicting rainfall erosion losses - a guide to conservation planning. In Agriculture Handbook No 537. Washington, DC: U.S. Department of Agriculture.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Benselama.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benselama, O., Mazour, M., Hasbaia, M. et al. Prediction of water erosion sensitive areas in Mediterranean watershed, a case study of Wadi El Maleh in north-west of Algeria. Environ Monit Assess 190, 735 (2018). https://doi.org/10.1007/s10661-018-7117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7117-1

Keywords

Navigation