Skip to main content

Advertisement

Log in

Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student’s t copula is the best-fit copula for PAMS-QAMS with Gaussian–Pearson III (P3) margins, while the Plackett copula is the best-fit copula for PPOT-QPOT with generalized Pareto (GPAR–GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acciolya, R. D. E., & Chiyoshi, F. Y. (2004). Modeling dependence with copulas: a useful tool for field development decision process. Journal of Petroleum Science and Engineering, 44(1–2), 83–91.

    Google Scholar 

  • Adamson, P. T., Metcalfe, A. V., & Parmentier, B. (1999). Bivariate extreme value distributions: an application of the gibbs sampler to the analysis of floods. Water Resources Research, 35, 2825–2832.

    Google Scholar 

  • Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain goodness of fit criteria based on stochastic process. Annals of Mathematical Statistics, 23, 193–212.

    Google Scholar 

  • Ashkar, F., & Bobee, B. (1988). Confidence intervals for flood events under a Pearson 3 or log-Pearson distribution. Water Resources Bulletin, 24(3), 639–650.

    Google Scholar 

  • Aucoin F (2015) Distributions that are sometimes used in hydrology. R package.

  • Beauchmap, M., Assani, A. A., Landry, R., & Massiocotte, P. (2015). Temporal variability of the magnitude and timing of winter maximum daily flows in southern Quebec (Canada). Journal of Hydrology, 529, 410–417.

    Google Scholar 

  • Box, G., & Jenkins, G. (1970). Time series analysis: forecasting and control. San Francisco: Holden-Day.

    Google Scholar 

  • Breymann, W., Dias, A., & Embrechts, P. (2003). Dependence structure for multivariate high-frequency data in finance. Quantitative Finance, 3(1), 1–14.

    Google Scholar 

  • Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. Chichester: John Wiley & Sons Ltd 308pp.

    Google Scholar 

  • Chowdhury, J., & Stedinger, J. (1991). Confidence intervals for design floods with estimated skew coefficient. ASCE. Journal of Hydraulic Engineering, 11, 811–831.

    Google Scholar 

  • Corbella, S., & Stretch, D. D. (2013). Simulating a multivariate sea storm using Archimedean copulas. Coastal Engineering, 76, 68–78.

    Google Scholar 

  • Daneshkhah, A., Remesan, R., Chatrabgoun, O., & Holman, L. P. (2016). Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. Journal of Hydrology, 540, 469–487.

    Google Scholar 

  • Davison, A. C., & Smith, R. L. (1990). Models for exceedances over high thresholds. Journal of the Royal Statistical Society. Series B (Methodological), 52(3), 393–442.

    Google Scholar 

  • De Michele, C., Salvadori, G., Vezzoli, R., & Pecora, S. (2013). Multivariate assessment of droughts: frequency analysis and dynamic return period. Water Resources Research, 49(10), 6985–6994.

    Google Scholar 

  • Dixon, W. J. (1950). Analysis of extreme values. Annals of Mathematical Statistics, 21(1), 488–506.

    Google Scholar 

  • Dodangeh E, Shahedi K, Solaimani K, Kossieris P (2017) Usability of BLRP model for hydrological applications in arid and semi arid regions with limited precipitation data. 3:539–555.

  • Dung, N. V., Merz, B., Bardossy, A., & Apel, H. (2015). Handling uncertainty in bivariate quantile estimation—an application to flood hazard analysis in the Mekong Delta. Journal of Hydrology, 527, 704–717.

    Google Scholar 

  • Embrechts, P., Andrea, H., & Juri, A. (2003). Using copulae to bound the value-at-risk for functions of dependent risks. Finance and Stochastics, 7(2), 145–167.

    Google Scholar 

  • Eslamian, S., & Feizi, H. (2007). Maximum monthly rainfall analysis using L-moments for an arid region in Isfahan Province, Iran. Journal of Applied Meteorology and Climatology, 46(4), 494–503.

    Google Scholar 

  • Fan, Y. R., Huang, W. W., Huang, G. H., Li, Y. P., Huang, K., & Li, Z. (2016). Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas. Advances in Water Resources, 88, 170–185.

    Google Scholar 

  • FAUT (Faculty of Agriculture, University of Tehran) (1993) General Investigation of Taleghan Basin: Hydrometeology and Climatology Report. 2: 20–25.

  • Favre, A. C., El Adlouni, S., Thi emong, N., & Bobee, B. (2004). Multivariate hydrological frequency analysis using copula. Water Resources Research, 40, W01101.

    Google Scholar 

  • Fu, G., & Butler, D. (2014). Copula-based frequency analysis of overflow and flooding in urban drainage systems. Journal of Hydrology, 510, 49–58.

    Google Scholar 

  • Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347–360.

    Google Scholar 

  • Genest, C., & Rivest, L. P. (1993). Statistical-inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423), 1034–1043.

    Google Scholar 

  • Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: a review and a power study. Insurance: Mathematics & Economics, 44(2), 199–213.

    Google Scholar 

  • Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. NY: Wiely.

    Google Scholar 

  • Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., & Razuvaev, V. N. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18, 1326–1350.

    Google Scholar 

  • Grubbs, F. E., & Beck, G. (1972). Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics, 14(4), 847–853.

    Google Scholar 

  • Halbert, K., Nguyen, C. C., Payrastre, O., & Gaume, E. (2016). Reducing uncertainty in flood frequency analysis: a comparison of local and regional approaches involving information on extreme historical floods. Journal of Hydrology, 541, 90–98.

    Google Scholar 

  • Kao, S. C., & Govindaraju, R. S. (2010). A copula-based joint deficit index for droughts. Journal of Hydrology, 380, 121–134.

    Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods (4th ed.). London: Charles Griffin.

    Google Scholar 

  • Kojadinovic, I., & Yan, J. (2010). Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software, 34(9), 1–20.

    Google Scholar 

  • Lee, S. H., & Maeng, S. J. (2003). Frequency analysis of extreme rainfall using L-moment. Irrigation and Drainage, 52(3), 219–230.

    Google Scholar 

  • Li, F., Van Gelder, P. H. A. J. M., Ranasinghe, R., Callaghan, D. P., & Jongejan, R. B. (2014). Probabilistic modeling of extreme storms along the Dutch coast. Coastal Engineering, 86, 1–13.

    CAS  Google Scholar 

  • Lin-Ye, J., Garcia-Leon, M., Gracia, V., & Sanchez-Arcilla, A. (2016). A multivariate statistical model of extreme events: an application to the Catalan coast. Coastal Engineering, 117, 138–156.

    Google Scholar 

  • Malekinezhad, H., & Zare-Garizi, A. (2014). Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmosfera, 27(4), 411–427.

    Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

    Google Scholar 

  • Mazas, F., & Hamm, L. (2017). An event-based approach for extreme joint probabilities of waves and sea levels. Coastal Engineering, 122, 44–59.

    Google Scholar 

  • Mazouz, R., Assani, A. A., Quessy, J. F., & Legare, G. (2012). Comparison of the interannual variability of spring heavy floods characteristics of tributaries of the St. Lawrence River in Quebec (Canada). Advances in Water Resources, 35, 110–120.

    Google Scholar 

  • Merz, R., & Blschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8), n/a–n/a. https://doi.org/10.1029/2007WR006744.

    Google Scholar 

  • Montanari, A. (2011). Uncertainty of hydrological predictions. In P. Wilderer (Ed.), Treatise on water science, vol. 2 (pp. 459–478). Oxford: Academic.

    Google Scholar 

  • Nelson, R. B. (2006). An introduction to copulas. New York: Springer.

    Google Scholar 

  • Orsini-Zeganda, L., & Scalante-Sandoval, C. (2016). Flood frequency analysis using synthetic samples. Atmosfera, 29(4), 299–309.

    Google Scholar 

  • Ozga-Zielinski, B., Ciupack, M., Adamowski, J., Khalil, B., & Malard, J. (2016). Snow-melt flood frequency analysis by means of copula based 2D probability distributions for the Narew River in Poland. Journal of Hydrology, 6, 21–51.

    Google Scholar 

  • Palaro, H., & Hotta, L. K. (2006). Using conditional copulas to estimate value at risk. Journal of Data Science, 4(1), 93–115.

    Google Scholar 

  • Patton, A. J. (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, 4–18.

    Google Scholar 

  • R Core Team (2012), R: A language and environment for statistical computing, R Found. for Stat. Comput., Vienna.

  • Rao, A. R., & Hamed, K. H. (2000). Flood frequency analysis. Boca Raton: CRC.

    Google Scholar 

  • Reddy, M. J., & Ganguli, P. (2012). Application of copulas for derivation of drought severity-duration-frequency curves. Hydrological Processes, 26(11), 1672–1685.

    Google Scholar 

  • Rodrigo, F. S., Esteban-Parra, M. J., Pozo-Vázquez, D., & Castro-Diez, Y. (1999). A 500-year precipitation record in southern Spain. International Journal of Climatology, 19(11), 1233–1253.

    Google Scholar 

  • Saf, B. (2009). Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey. Water Resources Management, 23(3), 531–551.

    Google Scholar 

  • Salvadori, G., & De Michele, C. (2011). Estimating strategies for multiparameter multivariate extreme value copulas. Hydrology and Earth System Sciences, 15(1), 141–150.

    Google Scholar 

  • Sarhadi, A., Soltani, S., & Modarres, R. (2012). Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458-459, 68–86.

    Google Scholar 

  • Schendel, T., & Thongwichian, R. (2017). Confidence intervals for return levels for the peals over-threshold approach. Advances in Water Resources, 99, 53–59.

    Google Scholar 

  • Schepsmeier U, Brechmann EC (2012) CDVine: Statistical inference of C- and D-vine copulas, R package version 1.1–9.

  • Serinaldi, F. (2013). An uncertain journey around the tails of multivariate hydrological distributions. Water Resources Research, 49(10), 6527–6547.

    Google Scholar 

  • Serinaldi, F., Bonaccorso, B., Cancelliere, A., & Grimaldi, S. (2009). Probabilistic characterization of drought properties through copulas. Physics and Chemistry of the Earth, 34(10–12), 596–605.

    Google Scholar 

  • Sharma, T. C., & Panu, U. S. (2014). A simplified model for predicting drought magnitudes: a case of streamflow droughts in Canadian prairies. Water Resources Management, 28(6), 1597–1611.

    Google Scholar 

  • Shiau, J. T. (2006). Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20(5), 795–815.

    Google Scholar 

  • Shiau, J. T., & Hsiao, Y. Y. (2012). Water-deficit-based drought risk assessments in Taiwan. Natural Hazards, 64(1), 237–257.

    Google Scholar 

  • Shiau, J. T., & Modarres, R. (2009). Copula based drought severity-duration-frequency analysis in Iran. Meteorological Applications, 16(4), 481–489.

    Google Scholar 

  • Shiau, J. T., Wang, H. Y., & Tsai, C. T. (2010). Copula-based depth-duration-frequency analysis of typhoons in Taiwan. Hydrology Research, 41(5), 414–423.

    Google Scholar 

  • Shiau, J. T., Modarres, R., & Nadarajah, S. (2012). Assessing multi-site drought connections in Iran using empirical copulas. Environmental Modeling and Assessment, 17(5), 469–482.

    Google Scholar 

  • Sklar, M. (1959). Fonctions de r’epartition `a n dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229–231.

    Google Scholar 

  • Vergni, L., Todisco, F., & Mannocchi, F. (2015). Analysis of agricultural drought characteristics through a two-dimensional copula. Water Resources Management, 29(8), 2819–2835.

    Google Scholar 

  • Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8), 1506–1515.

    Google Scholar 

  • Xu, K., Yang, D., Xu, X., & Lei, H. (2015). Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. Journal of Hydrology, 527, 630–640.

    Google Scholar 

  • Yan, J. (2007). Enjoy the joy of copulas: With a package copula. Journal of Statistical Software, 21(4), 1–21.

    Google Scholar 

  • Yang, T., Shao, Q., Hao, Z. C., Chen, X., Zhang, Z., Xu, C. Y., & Sun, L. (2010). Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. Journal of Hydrology, 380(3–4), 386–405.

    Google Scholar 

  • Yoon, P., Kim, T., & Yoo, C. (2013). Rainfall frequency analysis using a mixed GEV distribution: a case study for annual maximum rainfalls in South Korea. Stochastic Environmental Research and Risk Assessment, 27(5), 1143–1153.

    Google Scholar 

  • Yue, S. (2001). A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrological Processes, 15, 1033–1045. https://doi.org/10.1002/hyp.259.

    Google Scholar 

  • Yue, S., Ouarda, T. B. M. J., Bobee, B., Legendre, P., & Bruneau, P. (1999). The gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226, 88–100.

    Google Scholar 

  • Yurekli, K., Modarres, R., & Ozturk, F. (2009). Regional daily maximum rainfall estimation for Cekerek watershed by L-moments. Meteorological Applications, 16, 435–444.

    Google Scholar 

  • Zhang, L., & Singh, V. P. (2012). Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy, 14, 1784–1812.

    Google Scholar 

  • Zhang, Q., Xiao, M., & Singh, V. P. (2015). Uncertainty evaluation of copula analysis of hydrological droughts in the east river basin, China. Global and Planetary Change, 129, 1–9.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Stefan Gelissen for his technical supports. They also appreciate Iran Ministry of Power for their kind help and providing the data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeel Dodangeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodangeh, E., Shahedi, K., Solaimani, K. et al. Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT). Environ Monit Assess 191, 67 (2019). https://doi.org/10.1007/s10661-019-7202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7202-0

Keywords

Navigation