Skip to main content

Advertisement

Log in

Early warning systems development for agricultural drought assessment in Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The existing drought monitoring mechanisms in the sub-Saharan Africa region mostly depend on the conventional methods of drought monitoring. These methods have limitations based on timeliness, objectivity, reliability, and adequacy. This study aims to identify the spread and frequency of drought in Nigeria using Remote Sensing/Geographic Information Systems techniques to determine the areas that are at risk of drought events within the country. The study further develops a web-GIS application platform that provides drought early warning signals. Monthly NOAA-AVHRR Pathfinder NDVI images of 1 km by 1 km spatial resolution and MODIS with a spatial resolution of 500 m by 500 m were used in this study together with rainfall data from 25 synoptic stations covering 32 years. The spatio-temporal variation of drought showed that drought occurred at different times of the year in all parts of the country with the highest drought risk in the north-eastern parts. The map view showed that the high drought risk covered 5.98% (55,312 km2) of the country’s landmass, while low drought risk covered 42.4% (391,881 km2) and very low drought risk areas 51.5% (476,578 km2). Results revealed that a strong relationship exists between annual rainfall and season-integrated NDVI (r2 = 0.6). Based on the spatio-temporal distribution and frequency of droughts in Nigeria, drought monitoring using remote sensing techniques of VCI and NDVI could play an invaluable role in food security and drought preparedness. The map view from the web-based drought monitoring system, developed in this study, is accessible through localhost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abaje, I. B., Ati, O. F., Iguisi, E. O., & Jidauna, G. G. (2013). Droughts in the sudano-sahelian ecological zone of Nigeria: implications for agriculture and water resources development. Global Journal of Human Social Science (B): Geography. Geo-Sciences & Environmental, 13(2), 1–10.

    Google Scholar 

  • Abdulrahim, M., Ifabiyi, I., & Ismaila, A. (2013). Time series analyses of mean monthly rainfall for drought management in Sokoto, Nigeria. Ethiopian Journal of Environmental Studies and Management, 6(5). https://doi.org/10.4314/ejesm.v6i5.3.

  • Adeaga, O. (2013). Drought risks and impact on water resources in part of northern Nigeria. IAHS-AISH Proceedings and Reports, 359, 124–129 https://pdfs.semanticscholar.org/717e/90e06f5f6d8301ac0b2f571b4e2b0a3896e9.pdf.

    Google Scholar 

  • Akeh, L. E., Nnoli, N., Gbuyiro, S., Ikehua, F., & Ogunbo, S. (2000). Meteorological Early Warning Systems (EWS) for drought preparedness and drought management in Nigeria. Early Warning Systems for Drought Preparedness and Drought Management, 154.

  • Alley, W. M. (1985). The Palmer Drought Severity Index as a measure of hydrologic. Water Resources Bulletin, 21, 105–114.

    Article  Google Scholar 

  • Anyamba, A., & Tucker, C. J. (2005). Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. Journal of Arid Environments, 63(3), 596–614.

    Article  Google Scholar 

  • Ayuba, H. K. (2007). Climate Change Adaptation in Africa: Its Implications and Socio-Economic Prospects for Farmers in the Sub-Sahellian Agro-Ecological Zone. Nigeria. ARDA: Technical Report, The African Radio Drama Association Lagos.

  • Bashir, D. (2008). Sustainable management of drought and desertification in Nigeria. National Summit on the Environment: Greening the Environment for Sustainable Economic Development Held at Transcorp Hilton, Abuja on 20, 1–17. https://www.academia.edu/download/36330719/Challenges_of_Drough_and_Desertification_in_Nigeria.pdf.

  • Benedetti, R., & Rossini, P. (1993). On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sensing of Environment, 45(3), 311–326.

    Article  Google Scholar 

  • Bhuiyan, C., Singh, R. P., & Kogan, C. (2006a). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 32, 289–302.

    Article  Google Scholar 

  • Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006b). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), 289–302. https://doi.org/10.1016/j.jag.2006.03.002.

    Article  Google Scholar 

  • Binbol, N. L., & Edicha, J. A. (2012). Drought assessment in yola, adamawa state, nigeria by. In katsina journal of natural and applied sciences (Vol. 2, Issue 2). https://www.researchgate.net/profile/Charles_Anukwonke/post/how_to_effectively_combine_remote_sensing_with_meteorology_in_drought_monitoring/attachment/59d6297e79197b8077987ffa/AS:335678677241858@1457043441455/download/Dr.+Binbol.pdf.

  • Bonnici, A. M. (2005). Web GIS software comparison framework. Canada: Sir Sandford Fleming College.

    Google Scholar 

  • Caccamo, G., Chisholm, L. A., Bradstock, R. A., & Puotinen, M. L. (2011). Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing of Environment, 115(10), 2626–2639. https://doi.org/10.1016/j.rse.2011.05.018.

    Article  Google Scholar 

  • Chopra, P. (2006). Drought Risk Assessment using Remote Sensing and GIS: A case study of Gujarat. https://webapps.itc.utwente.nl/librarywww/papers_2006/msc/iirs/chopra.pdf.

  • Cracknell, A. P. (1997). Advanced very high resolution radiometer AVHRR. CRC Press.

  • Dai, A., Trenberth, K. E., & Qian, T. (2004). A global dataset of Palmer Drought Severity Index for 1870-2002:Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 45(3), 311–326.

    Google Scholar 

  • Dai, M., Huang, S., Huang, Q., Leng, G., Guo, Y., Wang, L., Fang, W., Li, P., & Zheng, X. (2020). Assessing agricultural drought risk and its dynamic evolution characteristics. Agricultural Water Management, 231, 106003. https://doi.org/10.1016/j.agwat.2020.106003.

    Article  Google Scholar 

  • Damizadeh, M., Saghafian, B., & Gieske, A. (2001). Studying vegetation responses and rainfall relationship based on NOAA-AVHRR images. In 22nd Asian Conference on Remote Sensing (pp. 5-9).

  • Dantas de Paula, M., Gómez Giménez, M., Niamir, A., Thurner, M., & Hickler, T. (2020). Combining European earth observation products with dynamic global vegetation models for estimating essential biodiversity variables. International Journal of Digital Earth, 13(2), 262–277. https://doi.org/10.1080/17538947.2019.1597187.

    Article  Google Scholar 

  • dos Santos, C. A. C., Mariano, D. A., do Nascimento, F. C. A., Dantas, F. R. C., Oliveira, G., Silva, M. T., da Silva, L. L., da Silva, B. B., Bezerra, B. G., Safa, B., Medeiros, S. S., & Neale, C. M. U. (2020). Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. International Journal of Applied Earth Observation and Geoinformation, 85. https://doi.org/10.1016/j.jag.2019.101982.

  • Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., & Huang, Y. (2013). A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23(1), 245–253. https://doi.org/10.1016/j.jag.2012.09.010.

    Article  Google Scholar 

  • Eidenshink, J. C., & Faundeen, J. L. (1994). The 1 km AVHRR global land data set: first stages in implementation. International Journal of Remote Sensing, 15(17), 3443–3462.

    Article  Google Scholar 

  • Fashae, O., Olusola, A., & Adedeji, O. (2017). Geospatial analysis of changes in vegetation cover over Nigeria. Bulletin of Geography. Physical Geography Series, 13(1), 17–27.

    Article  Google Scholar 

  • Gebrehiwot, T., van der Veen, A., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 13(3), 309–321. https://doi.org/10.1016/j.jag.2010.12.002.

    Article  Google Scholar 

  • Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6). https://doi.org/10.1029/2006GL029127.

  • Gu, Y., Hunt, E., Wardlow, B., Basara, J. B., Brown, J. F., & Verdin, J. P. (2008). Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35(22). https://doi.org/10.1029/2008GL035772.

  • Han, X., Wu, J., Zhou, H., Liu, L., Yang, J., Shen, Q., & Wu, J. (2020). Intensification of historical drought over China based on a multi-model drought index. International Journal of Climatology, 40, 5407–5419. https://doi.org/10.1002/joc.6527.

    Article  Google Scholar 

  • Hayes, J. T., O'Rourke, P. A., Terjung, W. H. and Todhunter, P. V. (1982). YIELD: A numerical crop yield model of irrigated and rainfed agriculture. Publications Climatology, p. 35(2).

  • Huang, B., Jiang, B., & Li, H. (2001). An integration of GIS, virtual reality and the Internet for visualization, analysis and exploration of spatial data. International Journal of Geographical Information Science, 15(5), 439–456.

    Article  CAS  Google Scholar 

  • Huang, J., Zhuo, W., Li, Y., Huang, R., Sedano, F., Su, W., Dong, J., Tian, L., Huang, Y., Zhu, D., & Zhang, X. (2020). Comparison of three remotely sensed drought indices for assessing the impact of drought on winter wheat yield. International Journal of Digital Earth, 13(4), 504–526. https://doi.org/10.1080/17538947.2018.1542040.

    Article  Google Scholar 

  • ICID. (1996). Multilingual technical dictionary on irrigation and drainage. 2nd revised edition. New Delhi: ICID-CIID.

  • Jain, S. K. (2009). Identification of drought vulnerable areas using NOAA AVHRR data. International Journal of Remote Sensing, 30(10), 2653–2668.

    Article  Google Scholar 

  • Janicki, J., Narula, N., Ziegler, M., Guénard, B., & Economo, E. P. (2016). Visualizing and interacting with large-volume biodiversity data using client–server web-mapping applications: The design and implementation of antmaps. org. Ecological Informatics, 32, 185–193.

    Article  Google Scholar 

  • Jeje, L. K. (1970). Some aspects of the geomorphology of South Western Nigeria. Unpublished Ph.D. Thesis submitted to the University of Edinburgh.

  • Jing, J., Helal, A. S., & Elmagarmid, A. (1999). Client-server computing in mobile environments. ACM computing surveys (CSUR), 31(2), 117–157.

    Article  Google Scholar 

  • Johnson, G. E., Achutuni, V. R., Thiruvengadachari, S., & Kogan, F. (1993). The role of NOAA satellite data in drought early warning and monitoring: selected case studies. In Drought assessment, management, and planning:Theory and case studies (pp. 31–47). Springer, Boston, MA.

  • Kandji, S. T., Verchot, L., & Mackensen, J. (2006). Climate change and variability in the Sahel region. Nairobi: United Nations.

    Google Scholar 

  • Karl, T., Quinlan, F., & Ezell, D. D. (1987). Drought termination and amelioration: Its climatological probability. Journal of Climate and Applied Meteorology, 10, 1198–1209.

    Article  Google Scholar 

  • Kaul, I. (2013). The Rise of the Global South: Implications for the Provisioning of Public Goods. http://hdr.undp.org/.

  • Khan, Z. A., & Adnan, M. (2010). Usability evaluation of web-based GIS applications: A comparative study of Google Maps and MapQuest.

    Google Scholar 

  • Klisch, A., & Atzberger, C. (2016). Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sensing, 8(4). https://doi.org/10.3390/rs8040267.

  • Kogan, F. N. (1997). Global Drought Watch from Space. Bulletin of the American Meteorological Society, 78(4), 621–636.

    Article  Google Scholar 

  • Kogan, F. N., & Unganai, L. S. (1998). Drought monitoring and corn yield estimation in Southern Africa from AVHRR data. Remote Sensing of Environment, 63, 219–232.

    Article  Google Scholar 

  • Kogan, F. N., & Zhu, X. (2001). Evolution of long-term errors in NDVI time series: 1985–1999. Advances in Space Research, 28(1), 149–153.

    Article  Google Scholar 

  • Kogan, F., Gitelson, A., Zakarin, E., Spivak, L., & Lebed, L. (2003). AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogrammetric Engineering & Remote Sensing, 69(8), 899–906.

    Article  Google Scholar 

  • Kropla, B. (2005). MapServer Reference. Beginning MapServer: Open Source GIS Development, 309-368.

  • Kumar, V., & Panu, U. (1997). Predictive assessment of severity of agricultural droughts based on agro-climatic factors. Journal of the American Water Resources Association, 18, 1255–1264.

    Article  Google Scholar 

  • Kumar, N., Singh, S. K., & Pandey, H. K. (2018). Drainage morphometric analysis using open access earth observation datasets in a drought-affected part of Bundelkhand, India. Applied Geomatics, 10(3), 173–189. https://doi.org/10.1007/s12518-018-0218-2.

    Article  Google Scholar 

  • Li, J., Lewis, J., Rowland, J., Tappan, G., & Tieszen, L. L. (2004). Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. Journal of Arid Environments, 59(3), 463–480.

    Article  Google Scholar 

  • Lillesand, T. M. M., & Kiefer, R. W. (1994). Remote sensing and image interpretation, 1–2.

  • Lohani, V. K., & Loganathan, G. V. (1997). An early warning system for drought management using the Palmer Drought Index. Journal of the American Water Resources Association, 43, 1375–1386.

    Article  Google Scholar 

  • MacEachren, A. M., Crawford, S., Akella, M., & Lengerich, G. (2008). Design and implementation of a model, web-based, GIS-enabled cancer atlas. The Cartographic Journal, 45(4), 246–260.

    Article  Google Scholar 

  • Mehr, A. D., Sorman, A. U., Kahya, E., Mahdi, Afshar, H., Danandeh Mehr, A., & Afshar, M. H. (2020). Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara. Hydrological Sciences Journal, 65(2), 254–268. https://doi.org/10.1080/02626667.2019.1691218.

    Article  Google Scholar 

  • Mohammadi, B., & Mehdizadeh, S. (2020). Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 106145.

  • Mohammadi, B., Ahmadi, F., Mehdizadeh, S., Guan, Y., Pham, Q. B., Linh, N. T. T., & Tri, D. Q. (2020). Developing novel robust models to improve the accuracy of daily streamflow modeling. Water Resources Management, 34(10), 3387–3409.

    Article  Google Scholar 

  • Narsimhan, B. (2004). Development of indices for agricultural drought monitoring using a spatially distributed hydrologic model, Texas: Ph.D. dissertation.

  • Nicholson, S. E., Davenport, M. L., & Malo, A. R. (1990). A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Climatic Change, 17(2–3), 209–241. https://doi.org/10.1007/BF00138369.

    Article  Google Scholar 

  • Nyong, A., Dabi, D., Adepetu, A., Berthe, A., & Ihemegbulem, V. (2013). Vulnerability in the Sahelian zone of Northern Nigeria: A household-level assessment. Climate Change and Vulnerability, 218–238. https://doi.org/10.4324/9781315067179.

  • Obioha, E. E. (2008). Climate change, population drift and violent conflict over land resources in northeastern Nigeria. Journal of Human Ecology, 23(4), 311–324.

    Article  Google Scholar 

  • Ogunlade, I., Olaoye, G., Tologbonse, D., & Ayinde, O. E. (2010). on - Farm Evaluation of Drought Tolerant Maize Varieties and Hybrids in the Southern Guinea Savanna Zones of Nigeria. February 2015. https://repository.up.ac.za/handle/2263/16595.

  • Oladipo, E. O. (1990). Some Aspects of the Spatial Characteristics of Drought in Northern Nigeria. Journal of Natural Hazards, 8, 171–188.

    Article  Google Scholar 

  • Oladipo, E. O. (1993). A comprehensive approach to drought and desertification in Northern Nigeria. Natural Hazards, 8(3), 235–261. https://doi.org/10.1007/BF00690910.

    Article  Google Scholar 

  • Orimoloye, I. R., Ololade, O. O., Mazinyo, S. P., Kalumba, A. M., Ekundayo, O. Y., Busayo, E. T., Akinsanola, A. A., & Nel, W. (2019). Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon, 5(7), e02148.

    Article  CAS  Google Scholar 

  • Orimoloye, I. R., Belle, J. A., Olusola, A. O., Busayo, E. T., & Ololade, O. O. (2020). Spatial assessment of drought disasters, vulnerability, severity and water shortages: a potential drought disaster mitigation strategy. Natural Hazards. https://doi.org/10.1007/s11069-020-04421-x.

  • Palmer, W. C. (1965). Meteorological drought, 45 Washington: DC: US Weather Bureau.

  • Park, S., Feddema, J. J., & Egbert, S. L. (2004). Impacts of hydrologic soil properties on drought detection with MODIS thermal data. Remote Sensing of Environment, 89(1), 53–62. https://doi.org/10.1016/j.rse.2003.10.003.

    Article  Google Scholar 

  • Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D. G., Vicente-Serrano, S. M., & Funk, C. (2020). A pan-African high-resolution drought index dataset. Earth System Science Data, 12, 753–769. https://doi.org/10.5194/essd-12-753-2020.

    Article  Google Scholar 

  • Prasad, A. K., Singh, R. P., Tare, V., & Kafatos, M. (2007). Use of Vegetation index and meteorological parameters for the prediction of crop yield in india. International Journal of Remote Sensing, 28(23), 5207–5235.

    Article  Google Scholar 

  • Qin, Q., Ghulam, A., Zhu, L., Wang, L., Li, J., & Nan, P. (2008). Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China. International Journal of Remote Sensing, 29(7), 1983–1995. https://doi.org/10.1080/01431160701355264.

    Article  Google Scholar 

  • Quarmby, N. A., Milnes, M., Hindle, T. L., & Silleos, N. (1993). The use of multi temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. International Journal of Remote Sensing, 14(2), 199–210.

    Article  Google Scholar 

  • Richter, K., Rischbeck, P., Eitzinger, J., Schneider, W., Suppan, F., & Weihs, P. (2008). Plant growth monitoring and potential drought risk assessment by means of Earth observation data. International Journal of Remote Sensing, 29(17–18), 4943–4960. https://doi.org/10.1080/01431160802036268.

    Article  Google Scholar 

  • Samra, J. (2004). Review and analysis of drought monitoring, declaration and management in India. http://www.iwmi.cgiar.org/Publications/Working_Papers/working/WOR84.pdf.

  • Sandinska, Y., & Bandrova, T. (2015). Web mapping using different types of data integration. In Proceedings of the 27th International Cartographic Conference, Rio de Janeiro, Brazil.

  • Schwarz, M., Landmann, T., Cornish, N., Wetzel, K. F., Siebert, S., & Franke, J. (2020). A spatially transferable drought hazard and drought risk modeling approach based on remote sensing data. Remote Sensing, 12(2), 237. https://doi.org/10.3390/rs12020237.

    Article  Google Scholar 

  • Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79.

    Article  Google Scholar 

  • Singh, H., Kumar, R., Singh, A., & Litoria, P. K. (2012). Cloud GIS for crime mapping. International Journal of Research in Computer Science, 2(3), 57–60.

    Article  Google Scholar 

  • Smith, P. M., Kalluri, S. V., Prince, S. D., & DeFries, R. (1997). The NOAA/NASA Pathfinder AVHRR 8-km land data set. Photogrammetric Engineering and remote sensing, 63(1), 12–13.

    Google Scholar 

  • Sona, N. T., Chen, C. F., Chen, C. R., Chang, L. Y., & Minh, V. Q. (2012). Monitoring agricultural drought in the lower mekong basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18(1), 417–427. https://doi.org/10.1016/j.jag.2012.03.014.

    Article  Google Scholar 

  • Stahle, D. W., Cleaveland, M. K., & Blanton, M. D. (2000). Tree-ring data document 16th century megadrought over North America. America Geography Union, 81(12), 121–125.

    Article  Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & De-Pauw, E. (2002). Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, p., 607–621.

  • Thenkabail, P. S., Mariotto, I., Gumma, M. K., Middleton, E. M., Landis, D. R., & Huemmrich, K. F. (2013). Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/EO-1 data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 427–439.

    Article  Google Scholar 

  • Thiruvengadachari, S., & Gopalkrishna, H. R. (1993). An integrated PC environment for assessment of drought. International Journal of Remote Sensing, 3201–3208.

  • Torry, W. (1986). Drought and the government-village emergency food distribution system in India. Human Organization, 45(1), 11–23. https://doi.org/10.17730/humo.45.1.q04423471v734354.

    Article  Google Scholar 

  • Unganai, L. S., & Kogan, F. N. (1998). Drought monitoring and corn yield estimation in Southern Africa from AVHRR. Remote Sensing of Environment, 63(3), 219–232.

    Article  Google Scholar 

  • Wan, Z., Wang, P., & Li, X. (2004). Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, 25(1), 61–72. https://doi.org/10.1080/0143116031000115328.

    Article  Google Scholar 

  • Wilhite, D. A., Rosenberg, N. J., & Glantz, M. H. (1986). Improving federal response to drought. Journal of Climate and Applied Meteorology, 13, 332–342.

    Article  Google Scholar 

  • Wilhite, D. A., Sivakumar, M. V. K., & Sponsors, D. A. W. (2000). Early warning systems for drought preparedness and drought management. In droughtmanagement.info. https://www.droughtmanagement.info/literature/WMO_early_warning_systems_drought_prepardness_2000.pdf.

  • Wu, J., Zhou, L., Liu, M., Zhang, J., Leng, S., & Diao, C. (2013). Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. International Journal of Applied Earth Observation and Geoinformation, 23(1), 397–410. https://doi.org/10.1016/j.jag.2012.11.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeyemi Olusola.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adedeji, O., Olusola, A., James, G. et al. Early warning systems development for agricultural drought assessment in Nigeria. Environ Monit Assess 192, 798 (2020). https://doi.org/10.1007/s10661-020-08730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08730-3

Keywords

Navigation