Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2014

01.10.2014

Generalized squirming motion of a sphere

verfasst von: On Shun Pak, Eric Lauga

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A number of swimming microorganisms, such as ciliates (Opalina) and multicellular colonies of flagellates (Volvox), are approximately spherical in shape and swim using beating arrays of cilia or short flagella covering their surfaces. Their physical actuation on the fluid may be mathematically modeled as the generation of surface velocities on a continuous spherical surface—a model known in the literature as squirming, which has been used to address various aspects of the biological physics of locomotion. Previous analyses of squirming assumed axisymmetric fluid motion and hence required all swimming kinematics to take place along a line. In this paper we generalize squirming to three spatial dimensions. We derive analytically the flow field surrounding a spherical squirmer with arbitrary surface motion and use it to derive its three-dimensional translational and rotational swimming kinematics. We then use our results to physically interpret the flow field induced by the swimmer in terms of fundamental flow singularities up to terms decaying spatially as \({\sim } 1/r^3\). Our results will make it possible to develop new models in biological physics, in particular in the area of hydrodynamic interactions and collective locomotion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brennen C, Winet H (1977) Fluid mechanics of propulsion by cilia and flagella. Annu Rev Fluid Mech 9:339–398 Brennen C, Winet H (1977) Fluid mechanics of propulsion by cilia and flagella. Annu Rev Fluid Mech 9:339–398
2.
Zurück zum Zitat Vogel S (1996) Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, Princeton Vogel S (1996) Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, Princeton
3.
Zurück zum Zitat Bray D (2000) Cell movements. Garland Publishing, New York Bray D (2000) Cell movements. Garland Publishing, New York
4.
Zurück zum Zitat Guasto JS, Rusconi R, Stocker R (2012) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 44:373–400ADSCrossRefMathSciNet Guasto JS, Rusconi R, Stocker R (2012) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 44:373–400ADSCrossRefMathSciNet
8.
Zurück zum Zitat Tamm SL (1972) Ciliary motion in Paramecium: a scanning electron microscope study. J Cell Biol 55:250–255CrossRef Tamm SL (1972) Ciliary motion in Paramecium: a scanning electron microscope study. J Cell Biol 55:250–255CrossRef
9.
Zurück zum Zitat Solari CA, Ganguly S, Kessler JO, Michod RE, Goldstein RE (2006) Multicellularity and the functional interdependence of motility and molecular transport. Proc Natl Acad Sci USA 103(5):1353–1358ADSCrossRef Solari CA, Ganguly S, Kessler JO, Michod RE, Goldstein RE (2006) Multicellularity and the functional interdependence of motility and molecular transport. Proc Natl Acad Sci USA 103(5):1353–1358ADSCrossRef
11.
Zurück zum Zitat Galajda P, Keymer J, Chaikin P, Austin R (2007) A wall of funnels concentrates swimming bacteria. J Bacteriol 189(23):8704–8707CrossRef Galajda P, Keymer J, Chaikin P, Austin R (2007) A wall of funnels concentrates swimming bacteria. J Bacteriol 189(23):8704–8707CrossRef
12.
Zurück zum Zitat Di Leonardo R, Angelani L, DellArciprete D, Ruocco G, Iebba V, Schippa S, Conte MP, Mecarini F, De Angelis F, Di Fabrizio E (2010) Bacterial ratchet motors. Proc Natl Acad Sci USA 107(21):9541–9545ADSCrossRef Di Leonardo R, Angelani L, DellArciprete D, Ruocco G, Iebba V, Schippa S, Conte MP, Mecarini F, De Angelis F, Di Fabrizio E (2010) Bacterial ratchet motors. Proc Natl Acad Sci USA 107(21):9541–9545ADSCrossRef
13.
Zurück zum Zitat Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J (2012) Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci USA 109(21):8007–8010 Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J (2012) Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci USA 109(21):8007–8010
15.
Zurück zum Zitat Fu HC, Powers TR, Wolgemuth HC (2007) Theory of swimming filaments in viscoelastic media. Phys Rev Lett 99:258101ADSCrossRef Fu HC, Powers TR, Wolgemuth HC (2007) Theory of swimming filaments in viscoelastic media. Phys Rev Lett 99:258101ADSCrossRef
16.
Zurück zum Zitat Shen XN, Arratia PE (May 2011) Undulatory swimming in viscoelastic fluids. Phys Rev Lett 106:208101 Shen XN, Arratia PE (May 2011) Undulatory swimming in viscoelastic fluids. Phys Rev Lett 106:208101
17.
Zurück zum Zitat Liu B, Powers TR, Breuer KS (2011) Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc Natl Acad Sci USA 108(49):19516–19520ADSCrossRef Liu B, Powers TR, Breuer KS (2011) Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc Natl Acad Sci USA 108(49):19516–19520ADSCrossRef
18.
Zurück zum Zitat Pratt LA, Kolter R (1998) Genetic analysis of escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 2:285–293 Pratt LA, Kolter R (1998) Genetic analysis of escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 2:285–293
19.
Zurück zum Zitat Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for listeria monocytogenes biofilm formation. J Bacteriol 189(12):4418–4424CrossRef Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for listeria monocytogenes biofilm formation. J Bacteriol 189(12):4418–4424CrossRef
20.
Zurück zum Zitat Houry A, Briandet R, Aymerich S, Gohar M (2010) Involvement of motility and flagella in bacillus cereus biofilm formation. Microbiology 156(4):1009–1018CrossRef Houry A, Briandet R, Aymerich S, Gohar M (2010) Involvement of motility and flagella in bacillus cereus biofilm formation. Microbiology 156(4):1009–1018CrossRef
21.
Zurück zum Zitat Berke AP, Turner L, Berg HC, Lauga E (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101:038102ADSCrossRef Berke AP, Turner L, Berg HC, Lauga E (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101:038102ADSCrossRef
22.
Zurück zum Zitat Ramaswamy S (2010) The mechanics and statistics of active matter. Annu Rev Condens Matter Phys 1:323–345 Ramaswamy S (2010) The mechanics and statistics of active matter. Annu Rev Condens Matter Phys 1:323–345
23.
Zurück zum Zitat Koch DL, Subramanian G (2011) Collective hydrodynamics of swimming microorganisms: living fluids. Annu Rev Fluid Mech 43:637–659 Koch DL, Subramanian G (2011) Collective hydrodynamics of swimming microorganisms: living fluids. Annu Rev Fluid Mech 43:637–659
24.
Zurück zum Zitat Berg HC (1993) Random walks in biology. Princeton University Press, Princeton Berg HC (1993) Random walks in biology. Princeton University Press, Princeton
25.
Zurück zum Zitat Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 99:048102ADSCrossRef Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 99:048102ADSCrossRef
26.
Zurück zum Zitat Romanczuk P, Bär M, Ebeling W, Lindner B, Schimansky-Geier L (2012) Active brownian particles: from individual to collective stochastic dynamics. Eur Phys J Spec Top 202:1–162CrossRef Romanczuk P, Bär M, Ebeling W, Lindner B, Schimansky-Geier L (2012) Active brownian particles: from individual to collective stochastic dynamics. Eur Phys J Spec Top 202:1–162CrossRef
27.
Zurück zum Zitat Ebbens SJ, Howse JR (2010) In pursuit of propulsion at the nanoscale. Soft Matter 6:726–738ADSCrossRef Ebbens SJ, Howse JR (2010) In pursuit of propulsion at the nanoscale. Soft Matter 6:726–738ADSCrossRef
28.
Zurück zum Zitat Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85 Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85
29.
Zurück zum Zitat Taylor GI (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond A 209(1099):447–461ADSCrossRefMATH Taylor GI (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond A 209(1099):447–461ADSCrossRefMATH
30.
Zurück zum Zitat Reynolds AJ (1965) The swimming of minute organisms. J Fluid Mech 23:241–260 Reynolds AJ (1965) The swimming of minute organisms. J Fluid Mech 23:241–260
31.
Zurück zum Zitat Katz DF (1974) On the propulsion of micro-organisms near solid boundaries. J Fluid Mech 64:33–49ADSCrossRefMATH Katz DF (1974) On the propulsion of micro-organisms near solid boundaries. J Fluid Mech 64:33–49ADSCrossRefMATH
32.
Zurück zum Zitat Balmforth NJ, Coombs D, Pachmann S (2010) Microelastohydrodynamics of swimming organisms near solid boundaries in complex fluids. Q J Mech Appl Math 63(3):267–294CrossRefMATHMathSciNet Balmforth NJ, Coombs D, Pachmann S (2010) Microelastohydrodynamics of swimming organisms near solid boundaries in complex fluids. Q J Mech Appl Math 63(3):267–294CrossRefMATHMathSciNet
33.
Zurück zum Zitat Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32(4):802–814 Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32(4):802–814
34.
Zurück zum Zitat Cox RG (1970) The motion of long slender bodies in a viscous fluids: I. general theory. J Fluid Mech 44:791–810ADSCrossRefMATH Cox RG (1970) The motion of long slender bodies in a viscous fluids: I. general theory. J Fluid Mech 44:791–810ADSCrossRefMATH
36.
Zurück zum Zitat Chwang AT, Wu TY (1971) A note on the helical movement of micro-organisms. Proc R Soc Lond B 178:327–346ADSCrossRef Chwang AT, Wu TY (1971) A note on the helical movement of micro-organisms. Proc R Soc Lond B 178:327–346ADSCrossRef
37.
Zurück zum Zitat Keller JB, Rubinow SI (1976) Swimming of flagellated microorganisms. Biophys J 16:151–170CrossRef Keller JB, Rubinow SI (1976) Swimming of flagellated microorganisms. Biophys J 16:151–170CrossRef
39.
Zurück zum Zitat Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 24:313–358ADSCrossRefMathSciNet Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 24:313–358ADSCrossRefMathSciNet
40.
Zurück zum Zitat Lighthill MJ (1952) On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math 109:109–118 Lighthill MJ (1952) On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math 109:109–118
41.
42.
43.
Zurück zum Zitat Drescher K, Leptos KC, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE (Apr 2009) Dancing Volvox: hydrodynamic bound states of swimming algae. Phys Rev Lett 102:168101 Drescher K, Leptos KC, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE (Apr 2009) Dancing Volvox: hydrodynamic bound states of swimming algae. Phys Rev Lett 102:168101
44.
Zurück zum Zitat Ishikawa T, Simmonds MP, Pedley TJ (2007) The rheology of a semi-dilute suspension of swimming model micro-organisms. J Fluid Mech 588:399–435ADSMATHMathSciNet Ishikawa T, Simmonds MP, Pedley TJ (2007) The rheology of a semi-dilute suspension of swimming model micro-organisms. J Fluid Mech 588:399–435ADSMATHMathSciNet
45.
Zurück zum Zitat Ishikawa T, Pedley TJ (2007) Diffusion of swimming model micro-organisms in a semi-dilute suspension. J Fluid Mech 588:437–462ADSMATHMathSciNet Ishikawa T, Pedley TJ (2007) Diffusion of swimming model micro-organisms in a semi-dilute suspension. J Fluid Mech 588:437–462ADSMATHMathSciNet
46.
48.
Zurück zum Zitat Michelin S, Lauga E (2011) Optimal feeding is optimal swimming for all Péclet numbers. Phys Fluids 23(10):101901 Michelin S, Lauga E (2011) Optimal feeding is optimal swimming for all Péclet numbers. Phys Fluids 23(10):101901
49.
Zurück zum Zitat Michelin S, Lauga E (2010) Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys Fluids 22(11):111901ADSCrossRef Michelin S, Lauga E (2010) Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys Fluids 22(11):111901ADSCrossRef
50.
Zurück zum Zitat Zhu L, Do-Quang M, Lauga E, Brandt L (2011) Locomotion by tangential deformation in a polymeric fluid. Phys Rev E 83:011901 Zhu L, Do-Quang M, Lauga E, Brandt L (2011) Locomotion by tangential deformation in a polymeric fluid. Phys Rev E 83:011901
51.
Zurück zum Zitat Zhu L, Lauga E, Brandt L (2012) Self-propulsion in viscoelastic fluids: Pushers vs. pullers. Phys Fluids 24(5):051902ADSCrossRef Zhu L, Lauga E, Brandt L (2012) Self-propulsion in viscoelastic fluids: Pushers vs. pullers. Phys Fluids 24(5):051902ADSCrossRef
52.
53.
Zurück zum Zitat Stone HA, Samuel ADT (1996) Propulsion of microorganisms by surface distortions. Phys Rev Lett 77:4102–4104ADSCrossRef Stone HA, Samuel ADT (1996) Propulsion of microorganisms by surface distortions. Phys Rev Lett 77:4102–4104ADSCrossRef
54.
Zurück zum Zitat Drescher K, Goldstein RE, Tuval I (2010) Fidelity of adaptive phototaxis. Proc Natl Acad Sci USA 107(25):11171–11176ADSCrossRef Drescher K, Goldstein RE, Tuval I (2010) Fidelity of adaptive phototaxis. Proc Natl Acad Sci USA 107(25):11171–11176ADSCrossRef
55.
Zurück zum Zitat Lamb H (1932) Hydrodynamics. Cambridge University Press, CambridgeMATH Lamb H (1932) Hydrodynamics. Cambridge University Press, CambridgeMATH
56.
Zurück zum Zitat Brenner H (1964) The Stokes resistance of a slightly deformed sphere. Chem Eng Sci 19:519–539 Brenner H (1964) The Stokes resistance of a slightly deformed sphere. Chem Eng Sci 19:519–539
57.
Zurück zum Zitat Happel J, Brenner H (1973) Low Reynolds number hydrodynamics: with special applications to particulate media. Noordhoff International Publishing, Leyden Happel J, Brenner H (1973) Low Reynolds number hydrodynamics: with special applications to particulate media. Noordhoff International Publishing, Leyden
58.
Zurück zum Zitat Kim S, Karilla JS (1991) Microhydrodynamics: principles and selected applications. Dover, New York Kim S, Karilla JS (1991) Microhydrodynamics: principles and selected applications. Dover, New York
59.
Zurück zum Zitat Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York
60.
Zurück zum Zitat Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Academic Press, CaliforniaMATH Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Academic Press, CaliforniaMATH
61.
Zurück zum Zitat Drescher K, Goldstein RE, Michel N, Nicolas M, Tuval I (2010) Fidelity of adaptive phototaxis. Phys Rev Lett 105:168101ADSCrossRef Drescher K, Goldstein RE, Michel N, Nicolas M, Tuval I (2010) Fidelity of adaptive phototaxis. Phys Rev Lett 105:168101ADSCrossRef
64.
Zurück zum Zitat Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, New York Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, New York
65.
Zurück zum Zitat Kim MJ, Breuer KS (2004) Enhanced diffusion due to motile bacteria. Phys Fluids 16(9):L78–L81ADSCrossRef Kim MJ, Breuer KS (2004) Enhanced diffusion due to motile bacteria. Phys Fluids 16(9):L78–L81ADSCrossRef
66.
Zurück zum Zitat Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801CrossRef Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801CrossRef
67.
Zurück zum Zitat Spagnolie SE, Lauga E (2012) Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J Fluid Mech 700:105–147 Spagnolie SE, Lauga E (2012) Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J Fluid Mech 700:105–147
Metadaten
Titel
Generalized squirming motion of a sphere
verfasst von
On Shun Pak
Eric Lauga
Publikationsdatum
01.10.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2014
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-014-9690-9

Weitere Artikel der Ausgabe 1/2014

Journal of Engineering Mathematics 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.