Skip to main content

Advertisement

Log in

Hydropower production and river rehabilitation: A case study on an alpine river

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Despite the numerous benefits of hydropower production, this renewable energy source can have serious negative consequences on the environment. For example, dams act as barriers for the longitudinal migration of organisms and transport of particulate matter. Accelerated siltation processes in the receiving river reduce the vertical connectivity between river and groundwater. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat and organisms, especially during winter months when natural discharge is low and almost constant. In this study, we report the current deficits present in the River Rhone from two different scientific perspectives – fish ecology and hydrology. Potential rehabilitation solutions in synergy with flood protection measures are discussed. We focus on the effects of hydropeaking in relation to longitudinal and vertical dimensions and discuss local river widening as a potential rehabilitation tool. The fish fauna in the Rhone is characterized by a highly unnatural structure (low diversity, impaired age distribution). A high correlation between fish biomass and monotonous morphology (poor cover availability) was established. Tracer hydrology provided further details about the reduced permeability of the riverbank, revealing a high degree of siltation with K values of about 4.7 × 10−6 m s−1. Improving the hydrologic situation is therefore essential for the successful rehabilitation of the Rhone River. To this end, hydropeaks in the river reaches must be attenuated. This can be realized by a combination of different hard technical and soft operational measures such as retention reservoirs or slower up and down ramping of turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Alabaster, J. S., & Lloyd, R. (1980). Water quality criteria for freshwater fish. London: Butterworths.

    Google Scholar 

  2. Arscott, D. B. (2001). Habitat heterogeneity and aquatic invertebrates along an alpine floodplain river, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.

  3. Bain, M. B., Finn, J. T., & Booke, H. E. (1985). Quantifying stream substrate for habitat analysis studies. North American Journal of Fish Management, 5, 499–506.

    Article  Google Scholar 

  4. Bain, M. B., Finn, J. T., & Booke, H. E. (1988). Streamflow regulation and fish community structure. Ecology, 69, 382–392.

    Article  Google Scholar 

  5. Baran, P., Delacoste, M., Dauba, F., Lascaux, J. M., Belaud, A., & Lek, S. (1995). Effects of reduced flow on brown trout (Salmo trutta L.) populations downstream dams in French Pyrenees. Regulated Rivers Research & Management, 10, 347–361.

    Article  Google Scholar 

  6. Baumann, P. (2004). Revitalisierung und Benthos der Rhone. Schlussbericht SP I-6, EAWAG, WSL, Limnex AG, Zurich, Switzerland.

  7. Becker, M. W., Georgian, T., Ambrose, H., Siniscalchi, J., & Fredrick, K. (2004). Estimating flow and flux of ground water discharge using water temperature and velocity. Journal of Hydrology, 296, 221–233.

    Article  Google Scholar 

  8. Berkman, H. E., & Rabeni, C. F. (1987). Effect of siltation on stream fish communities. Environmental Biology of Fishes, 18, 285–294.

    Article  Google Scholar 

  9. Bowlby, J. N., & Roff, J. C. (1986). Trout biomass and habitat relationships in Southern Ontario streams. Transactions of the American Fisheries Society, 15, 503–514.

    Article  Google Scholar 

  10. Bratrich, C., Truffer, B., Jorde, K., Markard, J., Meier, W., Peter, A., et al. (2004). Green hydropower: A new assessment procedure for river management. River Research and Applications, 20, 865–882.

    Article  Google Scholar 

  11. Brunke, M., & Gonser, T. (1997). The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37, 1–33.

    Article  Google Scholar 

  12. Cereghino, R., & Lavandier, P. (1998). Influence of hypolimnetic hydropeaking on the distribution and population dynamics of Ephemeroptera in a mountain stream. Freshwater Biology, 40, 385–399.

    Article  Google Scholar 

  13. Chatfield, C. (2004). The analysis of time series: An introduction. Boca Raton: Chapman & Hall.

    Google Scholar 

  14. Cummins, K. W. (1962). An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. American Midland Naturalist, 67, 477–504.

    Article  Google Scholar 

  15. de Marsily, G. (1986). Quantitative hydrogeology groundwater hydrology for engineers. San Diego: Academic Press.

    Google Scholar 

  16. E. Uetrecht (1906). Die Ablation der Rhone in ihrem Walliser Einzugsgebiete im Jahre 1904/05, Ph.D. thesis, Universität Bern, Bern, Switzerland.

  17. Egli, D. (1996). Caractéristiques hydrogéologiques de la digue du Rhône entre Branson et Fully. Relation entre le Rhône et la nappe sur ce tronçon, Diploma Thesis, Université de Neuchâtel, Neuchâtel, Switzerland.

  18. European Greenpower Marketing (2006). Hervorragende Aussichten für Wasserkraft, Available at: http://www.greenpowermarketing.org/downloads/4_Green_Power_Marketing_e.pdf (February).

  19. Fette, M., Pätzold, A., Tockner, K., & Wehrli, B. (2002). The Third Rhone Correction: Rehabilitation despite hydropeaking. EAWAG news, 55e, 21–23.

    Google Scholar 

  20. Freeman, M. C., Bowen, Z. H., Bovee, K. D., & Irwin, E. R. (2001). Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes. Ecological Applications, 19, 179–190.

    Article  Google Scholar 

  21. Friedl, G., & Wueest, A. (2002). Disrupting biogeochemical cycles – consequences of damming. Aquatic Sciences, 64, 55–65.

    Article  CAS  Google Scholar 

  22. Frutiger, A. (2004). Ecological impacts of hydroelectric power production on the River Ticino: Part 2. Effects on the larval development of the dominant benthic macroinvertebrate (Allogamus auricollis, Trichoptera). Archiv fur Hydrobiologie, 159, 57–75.

    Article  Google Scholar 

  23. Frutiger, A. (2004). Ecological impacts of hydroelectric power production on the River Ticino: Part 1. Thermal effects. Archiv fur Hydrobiologie, 159, 43–56.

    Article  Google Scholar 

  24. Grande Dixence S. A. (2006). Annual report 02-03, Available at: http://www.grande-dixence.ch/en/entreprise/rapport_gd_03.pdf (February).

  25. Greco, A. (2001). Hochwasserschutz Reuss. Vernässungen entlang des linken Reussdammes in Attinghausen, Geologisches Büro Dr. P. Angehrn AG, Altdorf, Switzerland.

  26. Gruppe fuer Hydrologie (1992). Hydrologischer Atlas der Schweiz, Geographisches Institut der Universitaet Bern, Bern, Switzerland.

  27. Habersack, H., Koch, M., & Nachtnebel, H. P. (2000). Flussaufweitungen in Österreich – Entwicklung, Stand und Ausblick. Österreichische Wasser- und Abfallwirtschaft, 52, 143–153.

    Google Scholar 

  28. Halleraker, J. H., Saltveit, S. J., Harby, A., Arnekleiv, J. V., Fjeldstad H. P., & Kohler, B. (2003). Factors influencing stranding of wild juvenile brown trout (Salmo trutta) during rapid and frequent flow decreases in an artificial stream. River Research and Applications, 19, 589–603.

    Article  Google Scholar 

  29. Hartung, J. (1999). Statistik: Lehr- und Handbuch der angewandten Statistik. Munich: Oldenbourg.

    Google Scholar 

  30. Hawkins, C. P., Kershner, J. L., Bisson, P. A., Bryant, M. D., Decker, L. M., Gregory, S. V., et al. (1993). A hierarchical approach to classifying stream habitat features. Fisheries, 18, 3–12.

    Article  Google Scholar 

  31. Heggenes, J. (1988). Physical habitat selection by brown trout (Salmo trutta) in riverine systems. Nordic Journal of Freshwater Research, 64, 74–90.

    Google Scholar 

  32. Hoehn, E. (2002). Hydrogeological issues of riverbank filtration – a review. In C. Ray (Ed.), Riverbank Filtration Understanding Contaminant Biogeochemistry and Pathogen Removal (pp. 17–41). Dordrecht: Kluwer.

    Google Scholar 

  33. Hoelting, B. (1996). Hydrogeologie – Einführung in die allgemeine und angewandte Hydrogeologie. Stuttgart: Enke.

    Google Scholar 

  34. Hunt, B. (1990). An approximation for the bank storage effect. Water Resources Research, 26, 2769–2775.

    Article  Google Scholar 

  35. Jungwirth, M. (1998). River continuum and fish migration – going beyond the longitudinal river corridor in understanding ecological integrity. In M. Jungwirth, S. Schmutz & S. Weiss (Eds.), Fish Migration and Fish Bypasses (pp. 19–32). Oxford: Blackwell Science.

    Google Scholar 

  36. Jungwirth, M., Muhar S., & Schmutz, S. (1995). The effects of recreated instream and ecotone structures on the fish fauna of an epipotamal river. Hydrobiologia, 303, 195–206.

    Google Scholar 

  37. Krebs, C. J. (1989). Ecological methodology. New York: Harper & Row.

    Google Scholar 

  38. Limnex, A. G. (2001). Schwall/ Sunk-Betrieb in schweizerischen Fliessgewässern. Zurich, Switzerland: Limnex AG.

    Google Scholar 

  39. Loizeau, J. L., & Dominik, J. (2000). Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquatic Sciences, 62, 54–67.

    Article  Google Scholar 

  40. Lytle, D. A., & Poff, N. L. (2003). Adaption to natural flow regimes. Trends in Ecology & Evolution, 19, 94–100.

    Article  Google Scholar 

  41. Matthews, W. J. (1998). Patterns in freshwater fish ecology. New York: Chapman & Hall.

    Google Scholar 

  42. Meier, W., Bonjour, C., Wueest, A., & Reichert, P. (2003). Modeling the effect of water diversion on the temperature of mountain streams. Journal of Environmental Engineering-ASCE, 129, 755–764.

    Article  CAS  Google Scholar 

  43. Meier, W., Frey, M., Moosmann, L., Steinlin, S., & Wueest, A. (2004). Wassertemperaturen und Wärmehaushalt der Rhone und ihrer Seitenbäche. Kastanienbaum, Switzerland: EAWAG.

    Google Scholar 

  44. Meile, T., Schleiss, A., & Boillat, J.-L. (2005). Entwicklung des Abflussregimes der Rhone seit dem Beginn des 20. Jahrhunderts. Wasser, Energie, Luft, 97, 133–142.

    Google Scholar 

  45. Milner, A. M. (1994). System recovery. In P. Calow & G. Petts (Eds.), The Rivers Handbook (pp. 76–97). Oxford: Blackwell Scientific.

    Google Scholar 

  46. Moerke, A. H., & Lamberti, G. A. (2003). Responses in fish community structure to restoration of two Indiana streams. North American Journal of Fish Management, 23, 748–759.

    Article  Google Scholar 

  47. Moog, O. (1993). Quantification of daily peak hydropower effects on aquatic fauna and management to minimize environmental impacts. Regulated Rivers Research & Management, 8, 5–14.

    Article  Google Scholar 

  48. Peter, A. (1992). Analyse von Fischmikrohabitaten zur Beurteilung der strukturellen Komplexität eines Fliessgewässers. Jahresbericht EAWAG, 1992, 60–61.

    Google Scholar 

  49. Peter, A. (1994). Fischökologische Aspekte bezüglich der Eigenschaften alpiner Fliessgewässer. Mitteilungen zur Fischerei, 52, 3–13.

    Google Scholar 

  50. Peter, A., Kienast, F., & Woolsey, S. (2005). River rehabilitation in Switzerland: Scope, challenges and research. Archiv fur Hydrobiologie Supplement, 155, 643–656.

    Google Scholar 

  51. Petts, G. (2001). Sustaining our rivers in crisis: Setting the international agenda for action. Water Science and Technology, 43, 3–16.

    CAS  Google Scholar 

  52. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. (1997). The natural flow regime. Bioscience, 47, 769–784.

    Article  Google Scholar 

  53. Portmann, M. (2003). Das Stromnetz im liberalisierten Strommarkt. Zurich, Switzerland: Swiss Federal Institute of Technology.

    Google Scholar 

  54. Regli, C. (2004). Revitalisierung von Fliessgewässern im Konflikt mit der Grundwassernutzung. Gas-Wasser-Abwasser, 4, 261–272.

    Google Scholar 

  55. Rohde, S., Kienast, F., & Buergi, M. (2004). Assessing the restoration success of river widenings: A landscape approach. Environmental Management, 34, 574–589.

    Article  Google Scholar 

  56. Saltveit, S. J., Halleraker, J. H., Arnekleiv, J. V., & Harby, A. (2001). Field experiments on stranding in juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) during rapid flow decreases caused byhydropeaking. Regulated Rivers Research & Management, 17, 609–622.

    Article  Google Scholar 

  57. Schaelchli, U. (1995). Basic equations for siltation of riverbeds. Journal of Hydraulic Engineering, 121, 274–287.

    Article  Google Scholar 

  58. Scheffer, F., & Schachtschabel, P. (1998). Lehrbuch der Bodenkunde. Stuttgart: Enke.

    Google Scholar 

  59. Schiemer, F., & Zalewski, M. (1992). The importance of riparian ecotones for diversity and productivity of riverine fish communities. Netherlands Journal of Zoology, 42, 323–335.

    Article  Google Scholar 

  60. Schmetterling, D. A., Clancy, C. G., & Brandt, T. M. (2001). Effects of riprap bank reinforcement on stream salmonids in the western United States. Fisheries, 26, 6–13.

    Article  Google Scholar 

  61. Scruton, D. A., Ollerhead, L. M. N., Clarke, K. D., Pennell, C., Alfredsen, K., Harby, A., et al. (2003). The behavioural response of juvenile Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis) to experimental hydropeaking on a Newfoundland (Canada) River. River Research and Applications, 19, 577–587.

    Article  Google Scholar 

  62. Silliman, S. E., & Booth, D. F. (1993). Analysis of time-series measurements of sediment temperature for identification of gaining vs losing portions of Juday-Creek, Indiana. Journal of Hydrology, 146, 131–148.

    Article  Google Scholar 

  63. Stanford, J. A., Ward, J. V., Liss, W. J., Frissell, C. A., Williams, R. N., Lichatowich, J. A., et al. (1996). A general protocol for restoration of regulated rivers. Regulated Rivers Research & Management, 12, 391–413.

    Article  Google Scholar 

  64. Stoneman, C. L., & Jones, M. L. (2000). The influence of habitat features on the biomass and distribution of three species of Southern Ontario stream salmonines. Transactions of the American Fisheries Society, 129, 639–657.

    Article  Google Scholar 

  65. Swiss Federal Office for Water and Geology (2006). SHGN 2009, Available at: http://www.bwg.admin.ch/lhg/moni/00/2009T_00.PDF (February).

  66. Truffer, B., Bratrich, C., Markard, J., Peter, A., Wueest, A., & Wehrli, B. (2003). Green hydropower: The contribution of aquatic science research to the promotion of sustainable electricity. Aquatic Sciences, 65, 99–110.

    Google Scholar 

  67. Truffer, B., Markard, J., Bratrich, C., & Wehrli, B. (2001). Green electricity from Alpine hydropower plants. Mountain Research and Development, 21, 19–24.

    Article  Google Scholar 

  68. Valentin, S., Lauters, F., Sabaton, C., Breil, P., & Souchon, Y. (1996). Modelling temporal variations of physical habitat for brown trout (Salmo trutta) in hydropeaking conditions. Regulated Rivers Research & Management, 12, 317–330.

    Article  Google Scholar 

  69. Vannote, R. L., & Minshall, G. W. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  70. Vannote, R. L., & Sweeney, B. W. (1980). Geographic analysis of thermal equilibria – A conceptual-model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist, 115, 667–695.

    Article  Google Scholar 

  71. Vorosmarty, C. J., Sharma, K. P., Fekete, B. M., Copeland, A. H., Holden, J., Marble, J., et al. (1997). The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26, 210–219.

    Google Scholar 

  72. Walther, A. (2002). Comparison of the groundwater fauna of two contrasting reaches of the Upper Rhone River. Diploma thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.

  73. Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. Journal of North American Benthological Society, 8, 2–8.

    Article  Google Scholar 

  74. Whiting, P. J. (2002). Streamflow necessary for environmental maintenance. Annual Review of Earth and Planetary Sciences, 30, 181–206.

    Article  CAS  Google Scholar 

  75. Willi, H. P. (2001). Synergism between flood protection and stream ecology. EAWAG news, 51e, 26–28.

    Google Scholar 

  76. Wueest, A. (2002). Alpine hydroelectric power plants and their “long-range effects” on downstream waters. EAWAG news, 55e, 18–20.

    Google Scholar 

  77. Yrjana, T., van der Meer, O., Riihimaki, J., & Sinisalmi, T. (2002). Contributions of short-term flow regulation patterns to trout habitats in a boreal river. Boreal Environment Research, 7, 77–89.

    Google Scholar 

Download references

Acknowledgments

This study is part of the Rhone–Thur project (http://www.rhone-thur.eawag.ch) that was funded by the Swiss Federal Office for Water and Geology, the Swiss Agency for the Environment, Forests and Landscape, the Swiss Federal Institute for Environmental Science and Technology (Eawag) and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL).

We thank the following individuals for their help with sampling campaigns, access to existing data and scientific input: Toni Arborino, Dominique Bérod, Alexandre Vogel (Canton Valais); Jürg Beer, Eduard Hoehn (Eawag); Hans-Rudolph Roth, Werner Stahel (Statistical Seminar, ETH Zurich); and Tobias Meile (EPFL). We are grateful to an anonymous reviewer for his/her helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fette.

Additional information

M. Fette and C. Weber contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fette, M., Weber, C., Peter, A. et al. Hydropower production and river rehabilitation: A case study on an alpine river. Environ Model Assess 12, 257–267 (2007). https://doi.org/10.1007/s10666-006-9061-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-006-9061-7

Keywords

Navigation