Skip to main content

Advertisement

Log in

A Wavelet-based Neural Network Model to Predict Ambient Air Pollutants’ Concentration

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The present paper proposes a wavelet based recurrent neural network model to forecast one step ahead hourly, daily mean and daily maximum concentrations of ambient CO, NO2, NO, O3, SO2 and PM2.5 — the most prevalent air pollutants in urban atmosphere. The time series of each air pollutant has been decomposed into different time-scale components using maximum overlap wavelet transform (MODWT). These time-scale components were made to pass through Elman network. The number of nodes in the network was decided on the basis of the strength (power) of the corresponding input signals. The wavelet network model was then used to obtain one-step ahead forecasts for a period extending from January 2009 to June 2010. The model results for out of sample forecast are reasonably good in terms of model performance parameters such as mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), normalized mean absolute error (NMSE), index of agreement (IOA) and standard average error (SAE). The MAPE values for daily maximum concentrations of CO, NO2, NO, O3, SO2 and PM2.5 were found to be 9.5%, 17.37%, 21.20%, 13.79%, 17.77% and 11.94%, respectively, at ITO, Delhi, India. Bearing in mind that the forecasts are for daily maximum concentrations tested over a long validation period, the forecast performance of the model may be considered as reasonably good. The model results demonstrate that a judicious selection of wavelet network design may be employed successfully for air quality forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Aquino, V. A., Trevino, E. S. G., Romero, R. R., Cruz, J. F. R., Ojeda, G. G., & Asomoza, J. R. (2005). Wavelet-network based on L1-norm minimization for learning chaotic time series. Journal of Applied Research and Technology, 3, 211–221.

    Google Scholar 

  2. Bruce, A. G., & Goa, H.-Y. (1996). Understanding waveShrink: variance and bias estimation. Biometrika, 83, 727–745.

    Article  Google Scholar 

  3. Chaloulakou, A., Saisana, M., & Spyrellis, N. (2003). Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Science of the Total Environment, 313, 1–13.

    Article  CAS  Google Scholar 

  4. Chelani, A. B., Chalapati Rao, C. V., Phadke, K. M., & Hasan, M. Z. (2002). Prediction of sulphur dioxide concentration using artificial neural networks. Environmental Modelling and Software, 17, 161–168.

    Article  Google Scholar 

  5. Chelani, A. B., & Devotta, S. (2007). Air quality assessment in Delhi: Before and after CNG as fuel. Environmental Monitoring and Assessment, 125, 257–263.

    Article  CAS  Google Scholar 

  6. Cogliani, E. (2001). Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables. Atmospheric Environment, 35, 2871–2877.

    Article  CAS  Google Scholar 

  7. Cornish, C. (2006). The WMTSA wavelet toolkit for MATLAB. http://www.atmos.washington.edu/~wmtsa/.

  8. Coulibaly, P., Anctil, F., Aravena, R., & Bobee, B. (2001). Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37(4), 885–896.

    Article  Google Scholar 

  9. Elkamel, A., Abdul-Wahab, S., Bouhamra, W., & Alper, E. (2001). Measurements and prediction of ozone levels around a heavily industrialized area: A neural network approach. Advances in Environmental Research, 5, 47–59.

    Article  CAS  Google Scholar 

  10. Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7, 195–224.

    Google Scholar 

  11. Galvao, R. K. H., & Yoneyama, T. (2004). A competitive neural network for signal clustering. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 34, 1282–1288.

    Article  Google Scholar 

  12. Gardner, M. W., & Dorling, S. R. (1998). Artificial neural network (the multi layer perception)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32, 2627–2636.

    Article  CAS  Google Scholar 

  13. Gautam, A. K., Chelani, A. B., Jain, V. K., & Devotta, S. (2008). A new scheme to predict chaotic time series of air pollutant concentrations using artificial neural network and nearest neighbor searching. Atmospheric Environment, 42, 4409–4417.

    Article  CAS  Google Scholar 

  14. Gokhale, S., & Khare, M. (2007). Statistical behaviour of carbon monoxide from vehicular exhausts in urban environment. Environment Modeling and Software, 22, 526–535.

    Article  Google Scholar 

  15. Goyal, P., & Rama Krishna, T. V. B. P. S. (1998). Various methods of emission estimation of vehicular exhausts in urban environment. Environment Modeling and Software, 22, 526–535.

    Google Scholar 

  16. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566.

    Article  Google Scholar 

  17. Hardle, W., Kerkyacharian, G., Picard, D., & Tsybakov, A. (1998). Wavelets, approximation, and Statistical applications (Lecture Notes in Statistics, vol 129). New York: Springer.

    Google Scholar 

  18. Ho, S. L., Xie, M., & Goh, T. N. (2002). A comparative study of neural network and Box–Jenkins ARIMA modeling in time series prediction. Computers and Industrial Engineering, 42, 371–375.

    Article  Google Scholar 

  19. Hogrefe, C., Vempaty, S., Rao, S. T., & Porter, P. S. (2003). A comparison of four techniques for separating different time scales in atmospheric variables. Atmospheric Environment, 37, 313–325.

    Google Scholar 

  20. Hogrefe, C., Biswas, J., Lynn, B. H., Civerolo, K., Ku, J. Y., Rosenthal, J., Rosenzweig, C., Goldberg, R., & Kinney, P. (2004). Simulating regional-scale ozone climatology over the eastern United States: model evaluation results. Atmospheric Environment, 38, 2627–2638.

    Google Scholar 

  21. Iyengar, S. S., Cho, E. C., & Phoha, V. V. (2002). Foundations of wavelet networks and applications. USA: Chapman & Hall, CRC.

    Google Scholar 

  22. Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10, 215–236.

    Article  Google Scholar 

  23. Karppinen, A., Kukkonen, J., Elolähde, T., Konttinen, M., Koskentalo, T., & Rantakrans, E. (2000). A modelling system for predicting urban air pollution: Model description and applications in the Helsinki metropolitan area. Atmospheric Environment, 34, 3723–3733.

    Article  CAS  Google Scholar 

  24. Kumar, U., Prakash, A., & Jain, V. K. (2008). Characterization of chaos in air pollutants: A Volterra–Wiener–Korenberg series and numerical titration approach. Atmospheric Environment, 42, 1537–1551.

    Article  CAS  Google Scholar 

  25. Lau, K.-M., & Weng, H. (1995). Climate signal detection using wavelet transform: How to make a time series sing. Bulletin of the American Meteorological Society, 76, 2391–2402.

    Article  Google Scholar 

  26. Lin, C.-H., & Wu, Y.-L. (2003). Semi-statistical model for evaluating the effects of source emissions and meteorological effects on daily average NO x concentrations in south Taiwan. Atmospheric Environment, 37, 2051–2059.

    Article  CAS  Google Scholar 

  27. Maqsood, I., Muhammad, R. K., & Abraham, A. (2002). Neurocomputing based Canadian weather analysis (pp. 39–44). USA: Computational Intelligence and Applications, Dynamic Publishers.

    Google Scholar 

  28. Meyers, S. D., Kelly, B. G., & O’Brien, J. J. (1993). An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Monthly Weather Review, 121, 2858–2866.

    Article  Google Scholar 

  29. Osowski, S., & Garanty, K. (2007). Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence, 20, 745–755.

    Article  Google Scholar 

  30. Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis. UK: Cambridge University Press.

    Google Scholar 

  31. Perez, P., & Trier, A. (2001). Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile. Atmospheric Environment, 35, 1783–1789.

    Article  CAS  Google Scholar 

  32. Podnar, D., Koracin, D., & Panorska, A. (2002). Application of artificial neural network to modeling the transport and dispersion of tracers in complex terrain. Atmospheric Environment, 36, 561–570.

    Article  CAS  Google Scholar 

  33. Rao, S. T., Zurbenko, I. G., Neagu, R., Porter, P. S., Ku, V., & Henry, R. F. (1997). Space and time scales in ambient ozone data. Bulletin of the American Meteorological Society, 78, 2153–2166.

    Google Scholar 

  34. Reich, S. L., Gomez, D. R., & Dawidowski, L. E. (1999). Artificial neural network for the identification of unknown air pollution sources. Atmospheric Environment, 33, 3045–3052.

    Article  CAS  Google Scholar 

  35. Rying, E. A., Bilbro, G. L., & Lu, J.-C. (2002). Focused local learning with wavelet neural networks. IEEE Transactions on Neural Networks, 13, 304–319.

    Article  CAS  Google Scholar 

  36. Willmot, C. J., Ackleson, S. G., Davis, R. E., Feddema, J.-J., Klink, K. M., Legates, D. R., et al. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90, 8995–9005.

    Article  Google Scholar 

  37. Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194.

    Google Scholar 

  38. Wong, L. T., Mui, K. W., & Hui, P. S. (2006). A statistical model for characterizing common air pollutants in air conditioned offices. Atmospheric Environment, 40, 4246–4257.

    Article  CAS  Google Scholar 

  39. Zaharim, A., Shaharuddin, M., Jailani, M., Nor, M., Karim, O. A., & Karim, S. (2009). Relationships between Airborne particulate matter and meteorological variables using non-decimated wavelet transform. European Journal of Scientific Research, 27(2), 308–312.

    Google Scholar 

  40. Zhang, Z., & San, Y. C. (2004). Adaptive wavelet neural network for prediction of hourly NO x and NO2 concentrations. In R. G. Ingalls, M. D. Rossetti, J. S. Smith, & B. A. Peters (Eds.), Proceedings of the 2004 winter simulation conference, (pp. 1770–1778). doi:10.1109/WSC.2004.1371529.

Download references

Acknowledgement

The authors would like to thank Central Pollution Control Board (CPCB), India for the data used in this study. The financial support provided by the Council of Scientific and Industrial Research (CSIR), New Delhi during the course of this study is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan Kumar.

Appendix -1

Appendix -1

$$ {\text{Observed Mean}} = \frac{1}{\text{n}}\left( {\sum {{x_o}} } \right) $$
$$ {\text{Predicted Mean}} = \frac{1}{\text{n}}\left( {\sum {{x_p}} } \right) $$
$$ {\text{Observed Standard Deviation}} = \sqrt {{\frac{{\sum { \left( {x{ _o} - \bar{x_o}} \right)^2} }}{{n - 1}}}} $$
$$ {\text{Predicted Standard Deviation}} = \sqrt {{\frac{{\sum { \left( {x{ _p} - \bar{x_p}} \right)^2} }}{{n - 1}}}} $$
$$ {\text{Mean Absolute Error }}\left( {\text{MSE}} \right) = \frac{{\sum {\left| {\left. {{x_o} - {x_p}} \right|} \right.} }}{n} $$
$$ {\text{Mean Absolute Percentage Error}} = \left( {\frac{1}{n}\sum {\left| {\left. {\frac{{{x_o} - {x_p}}}{{{x_o}}}} \right|} \right.} } \right) \times 100 $$
$$ {\text{Root Mean Square Error}} = \sqrt {{\left( {\frac{1}{n}\sum {{{\left( {{x_o} - {x_p}} \right)}^2}} } \right)}} $$
$$ {\text{Normalized Mean Square Error}} = \frac{{\left( {\frac{1}{n}\sum {{{\left( {{x_o} - {x_p}} \right)}^2}} } \right)}}{{{{\bar{x}}_o} \times {{\bar{x}}_p}}} $$
$$ {\text{Correlation Coefficient}} = \frac{{\frac{1}{n}\sum {\left( {{x_{{oi}}} - {{\bar{x}}_o}} \right)\left( {{x_{{pi}}} - {{\bar{x}}_p}} \right)} }}{{\sqrt {{\left[ {\frac{1}{n}\sum {{{\left( {{x_{{oi}}} - {{\bar{x}}_o}} \right)}^2} \cdot \frac{1}{n}\sum {{{\left( {{x_{{pi}}} - {{\bar{x}}_p}} \right)}^2}} } } \right]}} }} $$
$$ {\text{Index of Agreement}} = 1 - \frac{{\sum {{{\left( {{x_{{oi}}} - {x_p}} \right)}^2}} }}{{{{\left( {\left| {\left. {{x_p} - {{\bar{x}}_o}} \right|} \right. + \left| {\left. {{x_o} - {{\bar{x}}_o}} \right|} \right.} \right)}^2}}} $$

Where:

x o :

Observed values

x o :

Predicted values

\( {\bar{x}_o} \) :

Observed mean

\( {\bar{x}_p} \) :

Predicted mean

n :

Number of observation

i :

Vary from 1 to n

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, A., Kumar, U., Kumar, K. et al. A Wavelet-based Neural Network Model to Predict Ambient Air Pollutants’ Concentration. Environ Model Assess 16, 503–517 (2011). https://doi.org/10.1007/s10666-011-9270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9270-6

Keywords

Navigation