Skip to main content

Advertisement

Log in

A Multiple Criteria Decision Analysis Model Based on ELECTRE TRI-C for Erosion Risk Assessment in Agricultural Areas

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper deals with a real-world decision-aiding problem for zoning the risk of erosion, total suspended solids emissions, and ecological consequences of their transfers towards the streams. One of these consequences is the decrease of fishes into the streams in agricultural watersheds, because of the clogging of spawning areas. Given the multiple criteria nature of the problem, the originality of our research is to adapt a new decision-aiding sorting method, ELECTRE TRI-C, for identifying risk zones in rural areas, where measures must be taken. The developed model was applied in a small watershed (Low Normandy, France) where the objective was to assess the most appropriate intervention for protecting the reproduction habitat of the salmonid fishes. Agricultural parcels were evaluated on multiple criteria for grouping them into four risk categories, which are related to risk levels as well as priorities on the improvement works. The decision-aiding sorting model is co-constructed, within a constructive approach, through an interaction process between decision-aiding analysts, environmental experts, and local actors for improving transparency and communication on the results. This model is linked with a geographical information system (GIS) for assessing a set of criteria and the visualization of the farming parcels along with their type of intervention they should be submitted to best practices. The assignment results were validated by the environmental experts. These results have a strong impact on the agricultural practices of the farmers into the watersheds. The model proposed in this paper can be considered as a useful decision aid tool in any regions for implementing public agricultural and environmental policies for protecting the ecological areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boulton, A., Findlay, S., Marmonier, P., Stanley, E., Valett, H. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59–81.

    Article  Google Scholar 

  2. Gergel, S., Turner, M., Miller, J., Melack, J., Stanley, E. (2002). Landscape indicators of human impacts to riverine systems. Aquatic Sciences, 64(2), 118–128.

    Article  CAS  Google Scholar 

  3. Wood, P., & Armitage, P. (1997). Biological effects of fine sediments in the lotic environment. Environmental Management, 21(2), 203–217.

    Article  Google Scholar 

  4. Malcolm, I., Youngson, A., Soulsby, C. (2003). Survival of salmonid eggs in a degraded gravel-bed stream: effects of groundwater-surface water interactions. River Research and Applications, 19(4), 303–316.

    Article  Google Scholar 

  5. Gouraud, V., Baglinière, J., Baran, P., Sabaton, C., Lim, P., Ombredane, D. (2001). Factors regulating brown trout populations in two French rivers: application of a dynamic population model. Regulated Rivers: Research and Management, 17(4–5), 557–569.

    Article  Google Scholar 

  6. Arondel, C., & Girardin, P. (2000). Sorting cropping systems on the basis of their impact on groundwater quality. European Journal of Operational Research, 127(3), 467–482.

    Article  Google Scholar 

  7. Foster, J., & McDonald, A. (2000). Assessing pollution risks to water supply intakes using geographical information systems (GIS). Environmental Modelling & Software, 15(3), 225–234.

    Article  Google Scholar 

  8. Joerin, F., Thériault, M., Musy, A. (2001). Using GIS and outranking multicriteria analysis for land-use suitability assessment. International Journal of Geographical Information Science, 15(2), 153–174.

    Article  Google Scholar 

  9. Zaffalon, M. (2005). Credible classification for environmental problems. Environmental Modelling & Software, 20(8), 1003–1012.

    Article  Google Scholar 

  10. Baigorria, G., & Romero, C. (2007). Assessment of erosion hotspots in a watershed: integrating the WEPP model and GIS in a case study in the Peruvian Andes. Environmental Modelling & Software, 22(8), 1175–1183.

    Article  Google Scholar 

  11. Refsgaard, J., van der Sluijs, J., Højberg, A., Vanrolleghem, P. (2007). Uncertainty in the environmental modelling process: a framework and guidance. Environmental Modelling & Software, 22(11), 1543–1556.

    Article  Google Scholar 

  12. Bai, Y., Wagener, T., Reed, P. (2009). A top-down framework for watershed model evaluation and selection under uncertainty. Environmental Modelling & Software, 24(8), 901–916.

    Article  Google Scholar 

  13. Lautenbach, S., Berlekamp, J., Graf, N., Seppelt, R., Matthies, M. (2009). Scenario analysis and management options for sustainable river basin management: application of the Elbe DSS. Environmental Modelling & Software, 24(1), 26–43.

    Article  Google Scholar 

  14. Wischmeier, W., & Smith, D. (1978). Predicting rainfall erosion losses—a guide to conservation planning. In Agriculture handbook (Vol. 537). Washington, DC: U.S. Department of Agriculture.

  15. Dragan, M., Feoli, E., Fernettia, M., Zerihunb, W. (2003). Application of a spatial decision support system (SDSS) to reduce soil erosion in northern Ethiopia. Environmental Modelling & Software, 18(10), 861–868.

    Article  Google Scholar 

  16. Svoray, T., & Ben-Said, S. (2010). Soil loss, water ponding and sediment deposition variations as a consequence of rainfall intensity and land use: a multi-criteria analysis. Earth Surface Processes and Landforms, 35(2), 202–216.

    Google Scholar 

  17. Volk, M., Möller, M., Wurbs, D. (2010). A pragmatic approach for soil erosion risk assessment within policy hierarchies. Land Use Policy, 27(4), 997–1009.

    Article  Google Scholar 

  18. Auzet, V. (1987). L’érosion des sols cultivés en France sous l’action du ruissellement. Annales de Géographie, 96(537), 529–555.

    Article  Google Scholar 

  19. Dorioz, J.-M., Ombredane, D., et al. (2004). Bassin versant et qualité biologique des cours d’eau. Effets de la gestion des bassins versants sur les transferts particulaires et dissous et sur la qualité biologique des eaux de surface en zone d’élevage. Rapport action structurante inra - cemagref, aquae,. Lyon: INRA - Cemagref.

    Google Scholar 

  20. Montuelle, B., Grimaldi, C., et al. (2008). Relations entre structures paysagères, transferts hydriques et flux géochimiques, état écologique des milieux aquatiques. Rapport final du programme national anr ecoger 2005–2008. France: Lyon.

    Google Scholar 

  21. Boiffin, J., Papy, F., Eimberck, M. (1988). Influence des systèmes de culture sur les risques d’érosion par ruissellement concentré: I - Analyse des conditions de déclenchement de l’érosion. Agronomie, 8(8), 663–673.

    Article  Google Scholar 

  22. Probst, J.-L., & Amiotte Suchet, P. (1992). Fluvial suspended sediment transport and mechanical erosion in the Maghreb (North Africa). Hydrological Sciences Journal, 37(6), 621–637.

    Article  Google Scholar 

  23. Souchère, V., Millair, L., Echeverria, J., Bousquet, F., Le Page, C., Etienne, M. (2009). Co-constructing with stakeholders a role-playing game to initiate collective management of erosive runoff risks at the watershed scale. Environmental Modelling & Software, 25(11), 1359–1370.

    Article  Google Scholar 

  24. Figueira, J., Greco, S., Ehrgott, M. (Eds.) (2005). Multiple criteria decision analysis: state of the art surveys. In International series in operations research and management science (Vol. 78). New York: Springer.

  25. Zopounidis, C., Pardalos, P. (Eds.) (2010). Handbook of multicriteria analysis. In Applied optimization (Vol. 103). Berlin: Springer.

  26. Perny, P. (1998). Multicriteria filtering methods based on concordance and non-discordance principles. Annals of Operations Research, 80, 137–165.

    Article  Google Scholar 

  27. Belacel, N. (2000). Multicriteria assignment method PROAFTN: methodology and medical application. European Journal of Operational Research, 125(1), 175–183.

    Article  Google Scholar 

  28. Léger, J., & Martel, J. (2002). A multicriteria assignment procedure for a nominal sorting problematic. European Journal of Operational Research, 138(2), 349–364.

    Article  Google Scholar 

  29. Fernández, E., Navarro, J., Duarte, A. (2008). Multicriteria sorting using a valued preference closeness relation. European Journal of Operational Research, 185(2), 673–686.

    Article  Google Scholar 

  30. Almeida-Dias, J., Figueira, J., Roy, B. (2010). ELECTRE TRI-C: a multiple criteria sorting method based on characteristic reference actions. European Journal of Operational Research, 204(3), 565–580.

    Article  Google Scholar 

  31. Agarski, B., Budak, I., Kosec, B., Hodolic, J. (2012). An approach to multi-criteria environmental evaluation with multiple weight assignment. Environmental Modeling & Assessment, 17(3), 255–266.

    Article  Google Scholar 

  32. Macary, F., Ombredane, D., Uny, D. (2010). A multicriteria spatial analysis of erosion risk into small watersheds in the low Normandy bocage (France) by ELECTRE III method coupled with a GIS. International Journal of Multicriteria Decision Making, 1(1), 25–48.

    Article  Google Scholar 

  33. Macary, F., & Paulais, J. (2003). Méthode d’identification de zones prédisposées aux émissions et aux transferts particulaires: application à une zone d’élevage bovin intensif dans le bocage sud-Manche. Ingénieries, 36, 3–17.

    Google Scholar 

  34. Roy, B. (1985). Méthodologie Multicritère d’Aide à la Décision. Paris: Economica. English edition: Bernard, R. (1996) Multicriteria methodology for decision aiding (trans: McCord, M.R.). Dordrecht: Kluwer.

  35. Yu, W. (1992). Aide Multicritère à la Décision dans le Cadre de la Problématique du Tri : Concepts, Méthodes et Applications. Thèse de Doctorat, LAMSADE. Paris: Université Paris-Dauphine.

    Google Scholar 

  36. Roy, B., & Bouyssou, D. (1993). Aide Multicritère à la Décision: Méthodes et Cas. Paris: Economica.

    Google Scholar 

  37. Bouyssou, D., & Roy, B. (1987). La notion de seuils de discrimination en analyse multicritère. INFOR, 25(4), 302–313.

    Google Scholar 

  38. Martel, J., & Roy, B. (2006). Analyse de la signifiance de diverses procédures d’agrégation multicritère. INFOR, 44(3), 191–215.

    Google Scholar 

  39. Figueira, J., Greco, S., Roy, B., Słowiński, R. (2010). Electre methods: main features and recent developments. In Zopounidis, C. and Pardalos, P. (Eds.), Handbook of multicriteria analysis. Applied optimization (Vol. 103, pp. 51–89). Berlin: Springer.

  40. Figueira, J., & Roy, B. (2002). Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure. European Journal of Operational Research, 139(2), 317–326.

    Article  Google Scholar 

  41. Rogers, M., & Bruen, M. (1998). A new system for weighting environmental criteria for use within ELECTRE III. European Journal of Operational Research, 107(3), 552–563.

    Article  Google Scholar 

  42. Mousseau, V. (1995). Eliciting information concerning the relative importance of criteria. In Pardalos, P., Siskos, Y., and Zopounidis, C. (Eds.), Advances in multicriteria analysis. Nonconvex optimization and its applications (Vol. 5, pp. 17–43). Dordrecht: Kluwer.

  43. Baban, S., & Parry, T. (2001). Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy, 24(1), 59–71.

    Article  Google Scholar 

  44. Cavallo, A., & Norese, M.-F. (2001). GIS and multicriteria analysis to evaluate and map erosion and landslide hazards. Informatica, 12(1), 25–44.

    Google Scholar 

  45. Ceballos-Silva, A., & López-Blanco, J. (2003). Delineation of suitable areas for crops using a multi-criteria evaluation approach and land use/cover mapping: a case study in Central Mexico. Agricultural Systems, 77(2), 117–136.

    Article  Google Scholar 

  46. Kaur, R., Singh, O., Srinivasan, R., Das, S.N., Mishra, K. (2004). Comparison of a subjective and a physical approach for identification of priority areas for soil and water management in a watershed: a case study of Nagwan watershed in Hazaribagh district of Jharkhand, India. Environmental Modeling & Assessment, 9(2), 115–127.

    Article  Google Scholar 

  47. Tang, C.-G., & Liu, C.-Q. (2008). Nonpoint source pollution assessment of Wujiang River Watershed in Guizhou Province, SW China. Environmental Modeling & Assessment, 13(1), 155–167.

    Article  Google Scholar 

  48. Karaouzas, I., Dimitriou, E., Skoulikidis, N., Gritzalis, K.., Colombari, E. (2009). Linking hydrogeological and ecological tools for an integrated river catchment assessment. Environmental Modeling & Assessment, 14(6), 677–689.

    Article  Google Scholar 

  49. Bollinne, A., & Laurant, A. (1983). La prévision de l’érosion en Europe Atlantique: Le cas de la zone limoneuse de Belgique. Pédologie, 33(2), 117–136.

    Google Scholar 

  50. Henensal, P. (1986). L’érosion externe des sols par l’eau: approche quantitative et mécanismes, vol. 138 of Rapport de recherche LPC. Laboratoire central des ponts et chaussées.

Download references

Acknowledgments

Authors acknowledge the support from the PAPIER project of the ANR-ECOGER program. Juscelino Almeida-Dias acknowledges the financial support from the Fundação para a Ciência e a Tecnologia, Portugal (Grant SFRH / BD / 22985 / 2005), the COST Action Number IC0602, and the Fundação Calouste Gulbenkian, Portugal (Grant 109475). Daniel Uny of the UR ADBX also contributed to the work by supporting the development of geomatics applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Almeida Dias.

Appendices

Appendix 1: Definition of the Outranking Credibility Index

Let us assume, without loss of generality, that all the criteria g j F are to be maximized, which means that the preferences increase when the criteria performances increase too. Consider two farming parcels, denoted a and a′. When using the discriminating thresholds defined in Section 2.6, the following binary relations can be derived for each criterion [30]:

  1. 1.

    If | g j (a) − g j (a′) | ⩽ q j , then a is indifferent to a′according to g j , denoted a I j a′. Let C(a I a′) be the subset of criteria such that a I j a′.

  2. 2.

    If g j (a) − g j (a′) > p j , then a is strictly preferred to a′according to g j , denoted a P j a′. Let C(a P a′) be the subset of criteria such that a P j a′.

  3. 3.

    If q j < g j (a) − g j (a′) ⩽ p j , then a is weakly preferred to a′ (a hesitation between indifference and strict preference), denoted a Q j a′. Let C(a Q a′) be the subset of criteria such that a Q j a′.

The credibility of the comprehensive outranking of a over a′, denoted σ(a, a′), which reflects the strength of the statement “a outranks a′” (a is at least as good as a′) when taking all the criteria from F into account, is defined as follows:

$$ \sigma(a,a^{\prime}) = \left\{ \begin{array}{rcl} c(a,a^{\prime}) \prod_{j=1}^{n} \; \frac{1\;- \; d_{j}(a,a^{\prime})}{1 \; - \; c(a,a^{\prime})} & \text{if}\,\, d_{j}(a,a^{\prime}) > c(a,a^{\prime}),\\ c(a,a^{\prime}) & \textrm{otherwise,} \end{array} \right. $$
(1)

where,

$$ d_{j}(a,a^{\prime}) = \left\{ \begin{array}{rcl} 1 & \text{if}\,\,g_{j}(a) - g_{j}(a^{\prime}) < - v_{j},\\ \frac{g_{j}(a) - g_{j}(a^{\prime}) \; + \; p_{j}}{p_{j} \; - \; v_{j}} & \text{if}\,\, -v_{j} \leqslant g_{j}(a) - g_{j}(a^{\prime}) < - p_{j},\\ 0 & \text{if}\,g_{j}(a) - g_{j}(a^{\prime}) \geqslant - p_j. \end{array}\right. $$
(2)
$$\begin{array}{@{}rcl@{}}c(a,a^{\prime}) &=& \displaystyle\sum\limits_{j \;\in\; C(aPa^{\prime})} w_{j} + \sum\limits_{j \;\in\; C(aQa^{\prime})} w_{j}\\ &&+\sum\limits_{j \;\in\; C(aIa^{\prime})} w_{j} + \sum\limits_{j \;\in\; C(a^{\prime}Qa)} w_{j} \varphi_{j}, \end{array} $$
(3)
$$ \varphi_{j} = \frac{g_{j}(a) - g_{j}(a^{\prime}) + p_{j}}{p_{j} - q_{j}} \in [0,1]. $$
(4)

Therefore, σ(a, a′) is obtained from an overall aggregating function, which is based on a concordance and nondiscordance principle. This credibility index represents the sum of the voting power of the criteria, which is concordant with the assertion “a is at least as good as a′,” while taking into account the reducing effect by the criteria which are discordant with such an assertion. As presented above, this aggregation procedure requires the performances of each farming parcel on each criterion, denoted g j (a), j = 1, … , n; the weights of the criteria, denoted w j (we assume, without loss of generality, that \(\sum_{j=1}^{n}\) = 1); the indifference, the preference, and, possibly, the veto thresholds, denoted q j , p j , and v j , respectively, such that v j p j q j ⩾ 0.

Appendix 2: Performances of the Farming Parcels from Violettes

Table 7 Performances of the farming parcels

Appendix 3: Assignment Results

Table 8 ELECTRE TRI-C versus environmental expert’s assignment results

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macary, F., Dias, J.A., Figueira, J.R. et al. A Multiple Criteria Decision Analysis Model Based on ELECTRE TRI-C for Erosion Risk Assessment in Agricultural Areas. Environ Model Assess 19, 221–242 (2014). https://doi.org/10.1007/s10666-013-9387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9387-x

Keywords

Navigation