Skip to main content
Log in

A National-Scale Nutrient Loading Model for Finnish Watersheds—VEMALA

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

VEMALA is an operational, national-scale nutrient loading model for Finnish watersheds. It simulates hydrology; nutrient processes; leaching; and transport on land, rivers, and lakes. The model simulates nutrient gross load, retention, and net load from Finnish watersheds to the Baltic Sea. It was developed over a period of many years and three versions are currently operational, simulating different nutrients and processes. The first version of VEMALA (vs. 1.1) is based on a regression model between nutrient concentration and runoff. Since the first version, the model has been developed towards a more process-based nutrient loading model, by developing a catchment scale, semi-process-based model of total nitrogen loading, VEMALA-N, and by incorporating and developing a field-scale process-based model, ICECREAM, for total phosphorus loading simulations (VEMALA-ICECREAM). The model performance was tested in two ways: (1) by comparison of simulated net nitrogen and phosphorus loads with loads calculated from monitoring data for all major watersheds in Finland and (2) by comparing simulated and observed daily nutrient concentrations for the river Aurajoki by both old and new, process-based model approaches. Comparison of the results shows that the model is suitable for nutrient load simulation at a watershed scale and at a national scale; the new versions of the model are also suitable for applications at a smaller scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rekolainen, S., Kämäri, J., Hiltunen, M., & Saloranta, T. (2003). A conceptual framework for identifying the need and role of models in the implementation of the water framework directive. Int J River Basin Manag, 1(4), 347–352.

    Article  Google Scholar 

  2. Johnes, P. J. (1996). Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. Journal of Hydrology, 183, 323–349. ISSN 0022–1694.

    Article  CAS  Google Scholar 

  3. Johnes, P. J., & Butterfield, D. (2002). Landscape, regional and global estimates of nitrogen flux from land to sea: errors and uncertainties. Biogeochemistry. doi:10.1023/A:1015721416839.

    Google Scholar 

  4. Behrendt, H., Kornmilch, M., Opitz, D., Schmoll, O., & Scholz, G. (2002). Estimation of the nutrient inputs into river systems—experiences from German rivers. Regional Environmental Changes, 3, 107–117.

    Article  Google Scholar 

  5. Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A., Wetzig, A., Natho, S., Neumann, F., Hürdler, J., Matranga, M., Mahnkopf, J., Gadegast, M., & Behrendt, H. (2011). Modelling of Nutrient Emissions in River Systems—MONERIS—methods and background. International Review of Hydrobiology. doi:10.1002/iroh.201111331.

    Google Scholar 

  6. de Wit, M. J. M. (2001). Nutrient fluxes at the river basin scale. I: the PolFlow model. Hydrological Processes. doi:10.1002/hyp.175.

    Google Scholar 

  7. Lepistö, A., Granlund, K., Kortelainen, P., & Räike, A. (2006). Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland. Science of the Total Environment, 365(1), 238–259.

    Article  Google Scholar 

  8. Arnold, J. G., & Fohrer, N. (2005). SWAT 2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19(3), 563–572.

    Article  Google Scholar 

  9. Whitehead, P. G., Wilson, E. J., & Butterfield, D. (1998). A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part i - model structure and process equations. Science of the Total Environment, 210(211), 547–558.

    Article  Google Scholar 

  10. Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., Butterfield, D., Rankinen, K., & Lepisto, A. (2002). A nitrogen model for European catchments: INCA, new model structure and equations. Hydrological Earth System Science, 6, 559–582.

    Article  Google Scholar 

  11. Lunn, R. J., Adams, R., Mackay, R., & Dunn, S. M. (1996). Development and application of a nitrogen modelling system for large catchments. Journal of Hydrology, 174(3/4), 285–304.

    Article  CAS  Google Scholar 

  12. Heng, H., & Nikolaidis, N. P. (1998). Distributed modeling of nonpoint source pollution of nitrogen. Journal of American Water Resources Association, 34(2), 359–374.

    Article  CAS  Google Scholar 

  13. Arheimer, B. (1998). Riverine nitrogen—analysis and modelling under Nordic conditions. Ph.D. thesis. Kanaltryckeriet, Motala.

  14. Arheimer, B., & Brandt, M. (1998). Modelling nitrogen transport and retention in the catchments of southern Sweden. Ambio, 27(6), 471–480.

    Google Scholar 

  15. Andersson, L., Hellström, M., Persson, K. (2002). A nested model approach for phosphorus load simulation in catchments: HBV-P. In: Proceedings Nordic Hydrological Conference (pp. 229–238). Röros, Norway.

  16. Donnelly, C., Strömqvist, J., & Arheimer, B. (2011). Modelling climate change effects on nutrient discharges from the Baltic Sea catchment: processes and results. IAHS Publications, 348, 1–6.

    Google Scholar 

  17. Vehviläinen, B. (1994). The watershed simulation and forecasting system in the National Board of Waters and the Environment. Publications of the Water and Environment Research Institute, 17, 3–15.

    Google Scholar 

  18. Bergström, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments. SMHI. No. RH7. Norrköping.

  19. Vehviläinen, B. (1992). Snow cover models in operational watershed forecasting. Publications of Water and Environment Research Institute, 11. Helsinki.

  20. Kronvang, B., Laubel, A., & Grant, R. (1997). Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbæk stream, Denmark. Hydrological Processes, 11(6), 627–642.

    Article  Google Scholar 

  21. Littlewood, I. G. (1992). Estimating contaminant loads in rivers: a review. Wallingford, Institute of Hydrology. IH Report, 117, 1–87.

    Google Scholar 

  22. Bilaletdin, Ä., Kallio, K., Frisk, T., Vehviläinen, B., Huttunen, M., & Roos, J. (1994). A modification of the HBV model for assessing phosphorus transport from a drainage area. Water Science and Technology, 30(7), 179–182.

    CAS  Google Scholar 

  23. Puustinen, M., Turtola, E., Kukkonen, M., Koskiaho, J., Linjama, J., Niinioja, R., & Tattari, S. (2010). VIHMA—a tool for allocation of measures to control erosion and nutrient loading from Finnish agricultural catchments. Agriculture, Ecosystems and Environment, 138(3–4), 306–317.

    Article  Google Scholar 

  24. Rankinen, K., Kaste, Ø., & Butterfield, D. (2004). Adaptation of the Integrated Nitrogen Model for Catchments (INCA) to seasonally snow-covered catchments. Hydrology and Earth System Sciences, 8(4), 695–705.

    Article  CAS  Google Scholar 

  25. Mattsson, T., Kortelainen, P., & Räike, A. (2005). Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry, 76(2), 373–394.

    Article  CAS  Google Scholar 

  26. Soveri, J., Mäkinen, R., & Peltonen, K. (2001). Pohjaveden korkeuden ja laadun vaihteluista Suomessa 1975–1999. (in Finnish). Suomen ympäristö, 420, 382.

    Google Scholar 

  27. Dessureault-Rompre, J., Zebarth, B. J., Georgallas, A., Burton, D. L., Grant, C. A., & Drury, C. F. (2010). Temperature dependence of soil nitrogen mineralization rate: comparison of mathematical models, reference temperatures and origin of the soils. Geoderma, 157, 97–108.

    Article  CAS  Google Scholar 

  28. Myers, R. J. K., Campbell, C. A., & Weier, K. L. (1982). Quantitative relationship between net nitrogen mineralization and moisture content of soils. Canadian Journal of Soil Science, 62, 111–124.

    Article  CAS  Google Scholar 

  29. Paasonen-Kivekäs, M. (2009). Typpi. In M. Paasonen-Kivekäs, R. Peltomaa, P. Vakkilainen, & H. Äijö (Eds.), Maan vesi- ja ravinnetalous: ojitus, kastelu ja ympäristö (in Finnish) (pp. 175–188). Helsinki: Salaojayhdistys ry.

    Google Scholar 

  30. Martikainen, P.J., Regina, K., Syväsalo, E., Laurila, T., Lohila, A., Aurela, M., Silvola J., Kettunen, R., Saarnio, S., Koponen, H., Jaakkola, T., Pärnä, A., Silvennoinen, H., Lehtonen, H., Peltola, J., Sinkkonen, M., & Esala, M. (2002). Agricultural soils as a sink and source of greenhouse gases: a research consortium (AGROGAS). In J. Käyhkö & L. Talve (Eds.), Understanding the global system - The Finnish perspective (pp55–67). Helsinki. ISBN 951-29-2407-2

  31. Rekolainen, S., & Posch, M. (1993). Adapting the CREAMS model for Finnish conditions. Nordic Hydrology, 24(5), 309–322.

    Google Scholar 

  32. W. Knisel (Ed.) (1980). CREAMS, A field-scale model for chemicals, runoff, and erosion from agricultural management systems. Conservation Research Report 26. Washington, D.C.: USDA: 643.

  33. Knisel, W. (1993). GLEAMS: groundwater loading effects of agricultural management systems. Version 2.10. Publication No. 5. Athens, Georgia: University of Georgia, Department of Biological and Agricultural Engineering, Coastal Plain Experiment Station: 259.

  34. Tattari, S., Bärlund, I., Rekolainen, S., Posch, M., Siimes, K., Tuhkanen, H.-R., & Yli-Halla, M. (2001). Modeling sediment yield and phosphorus transport in Finnish clayey soils. Transactions of the ASAE, 44(2), 297–307.

    Article  Google Scholar 

  35. Yli-Halla, M., Tattari, S., Bärlund, I., Tuhkanen, H.-R., Posch, M., Siimes, K., & Rekolainen, S. (2005). Simulating processes of soil phosphorus in geologically young acidic soils of Finland. Transactions of the ASAE, 48(1), 101–108.

    Article  CAS  Google Scholar 

  36. Bärlund, I., Tattari, S., Puustinen, M., Koskiaho, J., Yli-Halla, M., & Posch, M. (2009). Soil parameter variability affecting simulated fieldscale water balance, erosion and phosphorus losses. Agricultural and Food Science, 18, 402–416.

    Google Scholar 

  37. Jaakkola, E., Tattari, S., Ekholm, P., Pietola, L., Posch, M., & Bärlund, I. (2012). Simulated effects of gypsum amendment on phosphorus losses from agricultural soils. Agricultural and Food Science, 21, 292–306.

    CAS  Google Scholar 

  38. Soil Conservation Service (1972). Hydrology. Section 4. In: Soil Conservation Service National Handbook. Washington, DC: U.S. Department of Agriculture.

  39. Monteith, J. L., & Unsworth, M. (1995). Principles of environmental physics (2nd ed.). London: Arnold.

    Google Scholar 

  40. Foster, G. R., Meyer, L. D., & Onstad, C. A. (1977). A runoff erosivity factor and variable slope length exponents for soil loss estimates. Transactions of the ASAE, 20(4), 683–687.

    Article  Google Scholar 

  41. Posch, M., & Rekolainen, S. (1993). Erosivity factor in the universal soil loss equation estimated from Finnish rainfall data. Agricultural Science in Finland, 2, 271–279.

    Google Scholar 

  42. Peltovuori, T. (2002). Phosphorus extractability in surface soil samples as affected by mixing with subsoil. Agricultural and Food Science in Finland, 11, 371–379.

    Google Scholar 

  43. Saarela, I., Järvi, A., Hakkola, H., & Rinne, K. (2003). Phosphorus status of diverse soils in Finland as influenced by long-term P fertilization 1. Native and previously applied P at 24 experimental sites. Agricultural and Food Science in Finland, 12, 117–132.

    Google Scholar 

  44. Saarela, I., Järvi, A., Hakkola, H., & Rinne, K. (2004). Phosphorus status of diverse soils in Finland as influenced by long-term P fertilization 2. Changes of soil test values in relation to P balance with references to incorporation depth of residual and freshly applied P. Agricultural and Food Science, 13, 276–294.

    Article  Google Scholar 

  45. Turtola, E., Alakukku, L., Uusitalo, R., & Kaseva, A. (2007). Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a clayey Finnish soil. Agricultural and Food Science, 16, 332–351.

    Article  Google Scholar 

  46. Turtola, E., & Kemppainen, E. (1998). Nitrogen and phosphorus losses in surface runoff and drainage water after application of slurry and mineral fertilizer to perennial grass ley. Agricultural and Food Science in Finland, 7, 569–581.

    Google Scholar 

  47. Koskiaho, J., Kivisaari, S., Vermeulen, S., Kauppila, R., Kallio, K., & Puustinen, M. (2002). Reduced tillage: influence on erosion and nutrient losses in a clayey field in southern Finland. Agricultural and Food Science in Finland, 11, 37–50.

    Google Scholar 

  48. Puustinen, M., Koskiaho, J., & Peltonen, K. (2005). Influence of cultivation methods on suspended solids and phosphorus concentrations in surface runoff on clayey sloped fields in boreal climate. Agriculture, Ecosystems and Environment, 105, 565–579.

    Article  CAS  Google Scholar 

  49. Uusitalo, R., Turtola, E., & Lemola, R. (2007). Phosphorus losses from a subdrained clayey soil as affected by cultivation practices. Agricultural and Food Science, 16, 352–365.

    Article  CAS  Google Scholar 

  50. Piirainen, V. (submitted). Simulating phosphorus loading from agricultural peat soils with the modified ICECREAM model. Boreal Environment Research.

  51. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., & Lajtha, K. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35, 75–139.

    Article  CAS  Google Scholar 

  52. Billen, G., & Garnier, J. (2000). Nitrogen transfer through the Seine drainage network: a budget based on the application of the ‘RIVERSTRAHLER’ model. Hydrobiologia, 410, 139–150.

    Article  Google Scholar 

  53. Thouvenot-Korppoo, M., Billen, G., & Garnier, J. (2009). Modelling benthic denitrification processes over a whole drainage network. Journal of Hydrology, 379, 239–250.

    Article  Google Scholar 

  54. Vollenweider, R. A. (1975). Input–output models. With special reference to phosphorus loading concept in limnology. Schweizerische Zeitschrift für Hydrologie, 37(1), 53–84.

    CAS  Google Scholar 

  55. Chapra, S. (1997). Surface Water-Quality Modeling. McGraw-Hill Companies, Inc., 864.

  56. Niemi, J. (2009). Environmental monitoring in Finland 2009–2012. The Finnish Environment, 12/2009, 1–80.

    Google Scholar 

  57. Kauppila, P., & Koskiaho, J. (2003). Evaluation of annual loads of nutrients and suspended solids in Baltic rivers. Nordic Hydrology, 34, 203–220.

    CAS  Google Scholar 

  58. Valpasvuo-Jaatinen, P., Rekolainen, S., & Latostenmaa, H. (1997). Finnish agriculture and its sustainability: environmental impacts. Ambio, 26, 448–455.

    Google Scholar 

  59. Tattari, S., & Linjama, J. (2004). Vesistöalueen kuormituksen arviointi. (in Finnish). Vesitalous, 45(3), 26–30.

    Google Scholar 

  60. Hooke, R., & Jeeves, T. (1961). Direct search solution of numerical and statistical problems. Journal of the ACM, 8(2), 212–229.

    Article  Google Scholar 

  61. HELCOM (2011). The fifth Baltic sea pollution load compilation (PLC-5). Baltic Sea Environment Proceedings, 128. Helsinki: Helsinki Comission.

  62. Ahlgren, I., Sörensen, F., Waara, T., & Vrede, K. (1994). Nitrogen budgets in relation to microbial transformations in lakes. Ambio, 23, 363–366.

    Google Scholar 

  63. Sondergaard, M., Jensen, J. P., & Jeppesen, E. (2001). Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World, 1, 427–442.

    Article  CAS  Google Scholar 

  64. Silvennoinen, H., Liikanen, A., Torssonen, J., Florian Stange, C., & Martikainen, P. J. (2008). Denitrification and nitrous oxide effluxes in boreal, eutrophic river sediments under increasing nitrate load: a laboratory microcosm study. Biogeochemistry, 91, 105–116.

    Article  CAS  Google Scholar 

  65. Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., & Vanrolleghem, P. A. (2007). Uncertainty in the environmental modelling process—a framework and guidance. Environmental Modelling and Software, 22, 1543–1556.

    Article  Google Scholar 

  66. Huhta, H., & Jaakkola, A. (1993). Viljelykasvin ja lannoituksen vaikutus ravinteiden huuhtoutumiseen turvemaasta Tohmajärven huuhtoutumiskentällä v. 1983–87. (in Finnish). Maatalouden tutkimuskeskuksen tiedote 20/93. Jokioinen. ISSN 0359–7652.

  67. Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S., & Sallantaus, T. (2006). Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences, 68, 453–468.

    Article  CAS  Google Scholar 

  68. Kløve, B. (2001). Characteristics of nitrogen and phosphorus loads in peat mining wastewater. Water Resources, 35(10), 2353–2362.

    Google Scholar 

  69. Johnsson, H., (1990). Nitrogen and water dynamics in arable soil. Dissertation. Upssala: Swedish University of Agricultural Sciences.

  70. Karvonen, T., & Varis, E. (1992). Mathematical models in crop production. Helsinki:University of Helsinki Department of plant production, Helsinki University Printing house.

Download references

Acknowledgments

The development of VEMALA has been funded by the Finnish Environment Institute (SYKE), the Ministry of Agriculture and Forestry of Finland (MMM), the European Commission (through the GisBloom project: Participatory monitoring, forecasting, control and socio-economic impacts of eutrophication and algal blooms in River Basin Districts (GISBLOOM) - LIFE09 ENV/FI/000569), and the Finnish Academy of Science (through the MARISPLAN project: Marine spatial Planning in a changing climate (Decision number 140871)). The VEMALA model has been developed over many years with inputs from researchers from the Finnish Environment Institute and the Regional Environmental Centres. We thank them for their input in the model development. We are also grateful to Michael Bailey for the language check. The authors also thank an anonymous reviewer, whose comments and suggestions helped to improve the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inese Huttunen.

Appendix 1

Appendix 1

Table 5 VEMALA-N model processes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huttunen, I., Huttunen, M., Piirainen, V. et al. A National-Scale Nutrient Loading Model for Finnish Watersheds—VEMALA. Environ Model Assess 21, 83–109 (2016). https://doi.org/10.1007/s10666-015-9470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-015-9470-6

Keywords

Navigation