Skip to main content
Log in

Physiological and biochemical dissection of fiber development in colored cotton

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Colored cotton is a very attractive proposition for the textile industry as it reduces the cost for dying. However, inferior fiber quality and non uniform color make it unsuitable for heavy machine spinning. Due to this reason cultivation of colored cotton on commercial scale has been restricted by cotton growers. The current study was planned to unveil the process of fiber development in isogenic lines of brown, green and white cotton by comparing their fiber length, flavonoid, cellulose, carbohydrate and enzyme activities (SuSy, SPS, acid invertase, Cox, NAD+, NADH, NADP+, and NADPH). White cotton fiber exhibited high cellulose contents (915.81 mg g−1) and long fibers (3.07 cm) as compared to colored cotton fibers with low cellulose content (787.63 and 780.66 mg g−1) and shorter fiber length (2.54 and 2.48 cm). Similarly the amount of flavonoids also varied significantly with maximum concentration (8.67 and 7.13 mg g−1) in brown and green cotton fiber at 5 DPA as compared to white cotton fiber (3.12 mg g−1) at 0 DPA. This high concentration of flavonoid not only lowered the total amount of carbohydrates but also lowered the sucrose transformation rate to developing cotton fiber in colored cotton. The activity of different enzymes (AI, SuSy and SPS, Cox, NAD+/NADH and coenzymes NADP+/NADPH involved in the metabolism of carbohydrates was higher in brown cotton fiber than green cotton fiber. However, high activity of these enzymes did not always correlated with higher amount of cellulose thus indicated the involvement of complex mechanisms for cellulose and flavonoid synthesis during the development of cotton fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SuSy:

Sucrose synthas

SPS:

Sucrose-phosphate synthase

AI:

Acid invertase

Cox:

Cytochrome c oxidase

BFC:

Brown fiber cotton

GFC:

Green fiber cotton

WFC:

White fiber cotton

DPA:

Days post anthesis

References

  • Ahuja SL, Dhayal LS, Monga D (2009) Performance of upland coloured cotton germplasm lines in line × tester crosses. Euphytica 169(3):303–312. doi:10.1007/s10681-009-9939-y

    Article  Google Scholar 

  • Al-Ani A, Bruzau F, Raymond P, Saint-Ges V, Leblanc JM, Pradet A (1985) Germination, respiration, and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiol 79:885–890

    Article  PubMed  CAS  Google Scholar 

  • Bauer PJ, Foulk JA, Gamble JR, Sadler EJ (2009) A comparison of two cotton cultivars differing in maturity for within-canopy fiber property variation. Crop Sci 49:651–657. doi:10.2135/cropsci2008.06.0350

    Article  Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85:45–54. doi:10.1006/anbo.1999.0996

    Article  CAS  Google Scholar 

  • Creasy LL (1968) The significance of carbohydrate metabolism in flavonoid synthesis in strawberry leaf disks. Phytochemistry 7(10):1743–1749. doi:10.1016/S0031-9422(00)86645-5

    Article  CAS  Google Scholar 

  • de Vetten N, ter Horst J, van Schaik HP, de Boer A, Mol J, Koes R (1999) A cytochrome b5 is required for full activity of flavonoid 3′,5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc Natl Acad Sci USA 96:778–783

    Article  PubMed  Google Scholar 

  • Delmer DP, Amor A (1995) Cellulose biosynthesis. Plant Cell 7:987–1000. doi:10.1105/tpc.7.7.987

    PubMed  CAS  Google Scholar 

  • Dickerson DK, Lane EF, Rodriguez DF (1999) Naturally colored cotton: resistance to changes in color and durability when refurbished with selected laundry aids. California Agricultural Technology Institute, California State University, Fresno, pp 1–42

    Google Scholar 

  • Doostdar H, Shapiro JP, Niedz R, Burke MD, McCollum TG, McDonald RE, Mayer RT (1995) A cytochrome P450 mediated naringenin 3′-hydroxylase from sweet orange cell cultures. Plant Cell Physiol 36(1):69–77

    CAS  Google Scholar 

  • Dublin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosette. Plant Physiol 43:1407–1420. doi:10.1093/pcp/pcf164

    Google Scholar 

  • Dutt Y, Wang XD, Zhu YG, Li YY (2004) Breeding for high yield and fibre quality in colored cotton. Plant Breed 123:145–151. doi:10.1046/j.1439-0523.2003.00938.x

    Article  Google Scholar 

  • Ghazi YA, Bourot S, Arioli T, Dennis ES, Llewellyn DJ (2009) Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol 50:1364–1381. doi:10.1093/pcp/pcp084

    Article  Google Scholar 

  • Giannasi DE (1978) Systematic aspects of flavonoid biosynthesis and evolution. Bot Rev 44(4):399–429. doi:10.1007/BF00196843

    Article  CAS  Google Scholar 

  • Gibon Y, Larher F (1997) Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem 251:153–157. doi:10.1006/abio.1997.2283

    Article  PubMed  CAS  Google Scholar 

  • Haigler CH, Milka ID, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51. doi:10.1023/A:1010615027986

    Article  PubMed  CAS  Google Scholar 

  • Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai W, Hozain M, Kang W, Richard BK, Strauss RE, Hequent EF, Wyatt BG, Jividen GM, Scott HA (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63:815–832. doi:10.1007/s11103-006-9127-6

    Article  PubMed  CAS  Google Scholar 

  • Hauch S, Magel E (1998) Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207:266–274. doi:10.1007/s004250050482

    Article  CAS  Google Scholar 

  • Hendrix DL (1993) Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Sci 33:131–1306. doi:10.2135/cropsci1993.0011183X003300060037x

    Article  Google Scholar 

  • Hernández I, Breusegem FV (2010) Opinion on the possible role of flavonoids as energy escape valves: novel tools for nature’s Swiss army knife? Plant Sci 179:297–301. doi:10.1016/j.plantsci.2010.06.001

    Article  Google Scholar 

  • Hua SJ, Wang XD, Yuan SN, Shao MY, Zhu SJ, Jiang LX (2007) Characterization of pigmentation and cellulose synthesis in colored cotton fiber. Crop Sci 47:1540–1546. doi:10.2135/cropsci2006.12.0835

    Article  CAS  Google Scholar 

  • Jacob-Wilk D, Kurek I, Hoagan P, Delmer DP (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 103:12191–12196. doi:10.1073/pnas.0605098103

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in Planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366. doi:10.1104/pp.010724

    Article  PubMed  CAS  Google Scholar 

  • King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114:153–160. doi:10.1104/pp.114.1.153

    PubMed  CAS  Google Scholar 

  • Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K (2001) Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens. Plant Cell Physiol 42(12):1338–1344. doi:10.1093/pcp/pce169

    Article  PubMed  CAS  Google Scholar 

  • Kohel RJ (1985) Genetic analysis of fiber color variants in cotton. Crop Sci 25:793–797

    Article  Google Scholar 

  • Kuehnle AR, Lewis DH, Markham KR, Mitchell KA, Davies KM, Jordan BR (1997) Floral flavonoids and pH in dendrobium orchid species and hybrids. Euphytica 95(2):187–194. doi:10.1023/A:1002945632713

    Article  CAS  Google Scholar 

  • Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99:11109–11114. doi:10.1073/pnas.162077099

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52:1526–1533. doi:10.1021/jf034482k

    Article  PubMed  CAS  Google Scholar 

  • Magel E, Jay-Allemand C, Ziegler H (1994) Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees 8(4):165–171

    Article  Google Scholar 

  • Martin LK, Haigler CH (2004) Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose 11:339–349. doi:10.1023/B:CELL.0000046420.10403.15

    Article  CAS  Google Scholar 

  • Murray AK, Nichols RL, Sassenrath-Cole GF (2001) Cell wall biosynthesis: glycan containing oligomers in developing cotton fibers, cotton fabric, wood and paper. Phytochemistry 57:975–986. doi:10.1016/S0031-9422(01)00143-1

    Article  PubMed  CAS  Google Scholar 

  • Murthy MSS (2001) Never say dye: the story of coloured cotton. Resonance 12:29–35

    Article  Google Scholar 

  • Pan ZE, Sun DL, Sun JL, Zhou ZL, Jia YH, Pang BY, Ma ZY, Du XM (2010) Effects of fiber wax and cellulose content on colored cotton fiber quality. Euphytica 173(2):141–149. doi:10.1007/s10681-010-0124-0

    Article  CAS  Google Scholar 

  • Pettigrew WT (2001) Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci 41:1108–1113

    Article  Google Scholar 

  • Prasad TK, Anderson MD, Stewart CR (1994) Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedling. Plant Physiol 105:619–627. doi:10.1104/pp.105.2.619

    PubMed  CAS  Google Scholar 

  • Ruan YL, Chourey PS (1998) A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol 118:399–406. doi:10.1104/pp.118.2.399

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964. doi:10.1105/tpc.010108

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS (2005) The delayed initiation and slow elongation of fuzz-like short fiber cells in relation to altered patters of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. J Exp Bot 56:977–984. doi:10.1093/jxb/eri091

    Article  PubMed  CAS  Google Scholar 

  • Ryser U (1985) Cell wall biosynthesis in differentiating cotton fibres. Eur J Cell Biol 39:236–256

    CAS  Google Scholar 

  • Santis AD, Landi P, Genchi G (1999) Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol 119:743–754. doi:10.1104/pp.119.2.743

    Article  PubMed  Google Scholar 

  • Shirley BW (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. doi:10.1104/pp.126.2.485

    Article  Google Scholar 

  • Shu HM, Zhou ZG, Xu NY, Wang YH, Zheng M (2009) Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. Eur J Agron 31:61–68. doi:10.1016/j.eja.2009.03.004

    Article  CAS  Google Scholar 

  • Sturma A, Hessa D, Leeb HS, Lienharda S (1999) Neutral invertase is a novel type of sucrose-cleaving enzyme. Physiol Plantarum 107:159–165. doi:10.1034/j.1399-3054.1999.100202.x

    Article  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424. doi:10.1016/S0003-2697(69)80009-6

    Article  PubMed  CAS  Google Scholar 

  • Vreeland JM Jr (1999) The revival of colored cotton. Scient Am 280:112–119. doi:10.1038/scientificamerican0499-112

    Article  Google Scholar 

  • Wang GQ, Xu CH, Wei JM (1999) Photosynthesis, respiration, and carbohydrate metabolism. In: Tang ZC (ed) Modern guidance for plant physiology experiments. Science Press, Beijing, pp 96–97

    Google Scholar 

  • Wang KR, Li SK, Song GJ, Chen G, Gao SZ (2002) Studies on cultivated physiological indexes for high yielding cotton in xinjiang. Sci Agric Sin 35(6):638–644 (In Chinese with English abstract)

    Google Scholar 

  • Whittaker DJ, Triplett BA (1999) Gene-specific changes in α-tubulin transcript accumulation in developing cotton fibers. Plant Physiol 121:181–188. doi:10.1104/pp.121.1.181

    Article  PubMed  CAS  Google Scholar 

  • Williamson RE, Burn JE, Hocart CH (2002) Towards the mechanism of cellulose synthesis. Trends Plant Sci 10:461–467. doi:10.1016/S1360-1385(02)02335-X

    Article  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67. doi:10.1016/S0735-2689(01)80002-2

    Article  CAS  Google Scholar 

  • Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES (2006) Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 47:107–127. doi:10.1093/pcp/pci228

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger SD, Oosterhuis DM (1990) Photosynthetic and respiratory activity of fruiting forms within the cotton canopy. Plant Physiol 94:463–469. doi:10.1104/pp.94.2.463

    Article  PubMed  CAS  Google Scholar 

  • Zhang XQ, Wang XD (2005) Composition analysis of pigment in colored cotton fiber. Acta Agron Sin 31(4):456–462 (In Chinese with English abstract)

    Google Scholar 

  • Zhao Z, Hu X, Ross CW (1987) Comparison of tissue preparation methods for assay of nicotinamide coenzymes. Plant Physiol 84:987–988

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Komor E, Moore PH (1997) Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiol 115:609–616. doi:10.1104/pp.115.2.609

    Article  PubMed  CAS  Google Scholar 

  • Zhu SW, Gao P, Sun JS, Wang HH, Luo XM, Jiao MY, Wang ZY, Xia GX (2006) Genetic transformation of green-colored cotton. In Vitro Cell Dev Biol Plant 42:439–444. doi:10.1079/IVP2006777

    Article  CAS  Google Scholar 

  • Zhu W, Liu K, Wang XD (2008) Heterosis in yield, fiber quality, and photosynthesis of okra leaf oriented hybrid cotton (Gossypium hirsutum L.). Euphytica 164(1):283–291. doi:10.1007/s10681-008-9732-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (the 973 Program: 2004CB11730502) and the Natural Science Foundation of Zhejiang (Y306093) and Zhejiang Technology Program (2008C22087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuede Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, S., Hua, S., Malik, W. et al. Physiological and biochemical dissection of fiber development in colored cotton. Euphytica 187, 215–226 (2012). https://doi.org/10.1007/s10681-012-0653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0653-9

Keywords

Navigation