Skip to main content
Log in

Genetic interrelationships among medium to late maturing tropical maize inbred lines using selected SSR markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Understanding the genetic relationships among breeding lines is fundamental in crop improvement programs. The objectives of this study were to apply selected polymorphic single sequence repeat (SSR) DNA markers and cluster medium to late maturing tropical elite maize inbred lines for effective hybrid breeding. Twenty elite inbred lines were genotyped with 20 SSR markers. The analysis detected a total of 108 alleles. The unweighted pair group method with arithmetic mean allocated the inbred lines into five clusters consistent with the known pedigrees. The tested inbred lines that were adapted to mid-altitude, sub-humid agro-ecologies were classified in different clusters, except for a few discrepancies. The greatest genetic distance was identified between the clusters of lines CML-202 and Gibe-1-91-1-1-1-1. The analysis determined the genetic grouping present in the source population, which will assist in effective utilization of the lines in tropical hybrid maize breeding programs to exploit heterosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajmone-Marsan P, Castiglioni P, Fusari F, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219–227

    Article  Google Scholar 

  • Barbosa AAM, Geraldi IO, Benchimol LL, Garcia AAF, Souza AP (2003) Relationship of intra- and inter-population tropical maize single cross hybrid performance and genetic distance computed from AFLP and SSR. Euphytica 130:87–99

    Article  CAS  Google Scholar 

  • Boppenmeier J, Melchinger AE, Brunklaus-Jung E, Geiger HH, Herrmann RG (1992) Genetic diversity for RFLP in European maize inbreds: in Relation to performance of flint × dent crosses for forage traits. Crop Sci 32:895–902

    Article  Google Scholar 

  • Byerlee D, Spielman DJ, Alemu D, Gautam M (2007) Policies to promote cereal intensification in Ethiopia: a review of evidence and experience. International Food Policy Research Institute (IFPRI), discussion paper no. 707. IFPRI, Washington

  • CSA (2010) Agricultural sample survey 2009/2010. Report on farm management practices. Private peasant holdings, Meher season. Statistical Bulletin. Addis Ababa, Ethiopia

  • CSA (2011) Agricultural sample survey 2010/2011. Report on farm management practices. Private peasant holdings, Meher season. Statistical Bulletin. Addis Ababa, Ethiopia

  • Dawit A, Wilfred M, Nigussie M, Spielman DJ (2008) The maize seed system in Ethiopia: challenges and opportunities in drought prone areas. Afr J Agric Res 3:305–314

    Google Scholar 

  • Doss CR, Mwangi W, Verkuijl H, de Groote H (2003) Adoption of maize and wheat technologies in eastern Africa: a synthesis of the findings of 22 case studies. CIMMYT Economics Working Paper 03–06, CIMMYT, Mexico

  • Dubreuil P, Dufour P, Krejci P, Causse M, Vienne D, Gallais A, Charcosset S (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799

    Article  Google Scholar 

  • Enoki H, Sato H, Koinuma K (2002) SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet 104:12070–12133

    Google Scholar 

  • Fehr WR (1987) Principals of cultivar development: Theory and Technique, vol 1. McGraw-Hill, Inc., New York

    Google Scholar 

  • Gonzalez S, Cordova H, Rodriguez S, de Leon H, Serrato VM (1997) Determinacion de un patron heterotico a partir de la evaluacion de un dialelo de diez lineas de maiz subtropical. Agron Mesoam 8:1–7

    Google Scholar 

  • Hallauer AR (1990) Methods used in developing maize inbred. Maydica 35:1–16

    Google Scholar 

  • Hallauer AR, Lopez-Perez E (1979) Comparisons among testers for evaluating lines of corn. Crop Sci 34:57–75

    Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  • Han GC, Vasal SK, Beck DL, Elis E (1991) Combining ability of inbred lines derived from CIMMYT maize (Zea mays L.) germplasm. Maydica 36:57–64

    Google Scholar 

  • Heckenberger M, Bohn M, Zeigle JS, Joe LK, Hauser JD, Hutten M, Melchinger AE (2002) Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties I. Genetic and technical sources of variation in SSR data. Mol Breed 10:181–191

    Article  CAS  Google Scholar 

  • Konstantinov K, Drinic SM (2000) Heterosis in maize molecular markers polymorphism and probability of prediction. In: Quantitative Genetics and Breeding Methods: The Way Ahead, Paris, France, August 30–September 1, 2000, pp.310–312

  • Lange DA, Penuela S, Denny LR, Mudge J, Concidido VC, Orf JC, Young ND (1998) A plant isolation protocol suitable for polymerase chain reaction based marker-assisted breeding. Crop Sci 138:217–220

    Article  Google Scholar 

  • Lanza LLB, de Souza Jr CL, Ottoboni LM, Vieira MLC, de Souza AP (1997) Genetic distance of inbred lines and prediction of maize single cross performance using RAPD markers. Theor Appl Genet 94:1023–1030

    Article  CAS  Google Scholar 

  • Lee M, Godshalk EB, Lamkey KR, Woodman WW (1989) Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci 29:1067–1071

    Article  Google Scholar 

  • Legesse WB, Myburg AA, Pixley KV, Botha AM (2007) Genetic diversity of maize inbred lines revealed by SSR markers. Hereditas 144:10–17

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Du J, Wang T, Shi Y, Song Y, Jia J (2002) Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers. Maydica 47:93–101

    Google Scholar 

  • Lin JJ, Fleming R, Kuo J, Mathews BF, Saunders JA (2000) Detection of plant genes using a rapid, nonorganic DNA purification method. Biotechnology 28:346–350

    CAS  Google Scholar 

  • Livini C, Anjmone-Marsan P, Melchinger AE, Messmer MM, Motto M (1992) Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor Appl Genet 84:17–25

    Article  Google Scholar 

  • Mbogori MN, Kimani M, Kuria A, Lagat M, Danson JW (2006) Optimization of FTA technology for large scale plant DNA isolation for use in marker assisted selection. Afr J Biotechnol 5:693–696

    CAS  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetic and exploitation of heterosis in crops. CSSA, Madison

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA, Madison

    Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick P, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Pinto LR, Vieira MLC, de Souza CL, de Souza AP (2003) Genetic diversity assessed by microsatellites in tropical maize population submitted to high-density reciprocal recurrent selection. Euphytica 134:277–286

    Article  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957

    Article  PubMed  CAS  Google Scholar 

  • Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889

    Article  PubMed  CAS  Google Scholar 

  • Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098

    Article  Google Scholar 

  • Sibov ST, de Souz CL, Garica AF, Silva AR, Mongolin CA, Benchimol LL, de Souza AP (2003) Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. Map construction and localization of loci showing distorted segregation. Hereditas 139:96–106

    Article  PubMed  Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovitch S, Ziegle J (1997) An evaluation the utility of SSR loci as molecular markers in maize (Zea mays L.): comparison with data from RFLP and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Terron A, Preciado E, Cordova H, Mickelson H, Lopez R (1997) Determinacion del patron heterotico de 30 lineas de maiz derivadas del la poblacion 43 SR del CIMMYT. Agron Mesoam 8:26–34

    Google Scholar 

  • Van Berloo R (2007) GGT graphical genotypes. Laboratory of plant breeding Wageningen University. The Netherlands. (http://www.dpw.wau.nl/pv/pub/ggt/)

  • Vaz Patto MC, Satovic Z, Pêgo S, Fevereiro P (2004) Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers. Euphytica 137:63–72

    Article  Google Scholar 

  • Warburton ML, Xianchun X, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington D (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Article  Google Scholar 

  • Welz HG, Geigerb HH (2002) Principles of marker-assisted selection 1. Qualitative traits. http://nbpgr.delhi.nic.in/mmarker/s2-1Welz

  • Xiao J, Li J, Yuan L, McCough SR, Tanks S (1996) Genetic diversity and its relationship to hybrid performance and heterosis as revealed by PCR based markers. Theor Appl Genet 92:637–643

    Article  CAS  Google Scholar 

  • Yuan LX, Fu JH, Warburton ML, Li XH, Zang S, Khairallah M, Liu X, Peng Z, Li L (2000) Comparison of genetic diversity among maize inbred lines based on RFLPs, SSRs, AFLPs and RAPDs. Acta Genet Sin 27:725–733

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Alliance for a Green Revolution in Africa (AGRA) is sincerely thanked for financial support to initiate the study. The Ethiopian Institute of Agricultural Research (EIAR) is acknowledged for providing leave of absence and hosting the field research to the first author. The all round support provided by the national maize research project of Ethiopia is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Shimelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wende, A., Shimelis, H., Derera, J. et al. Genetic interrelationships among medium to late maturing tropical maize inbred lines using selected SSR markers. Euphytica 191, 269–277 (2013). https://doi.org/10.1007/s10681-012-0826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0826-6

Keywords

Navigation