Skip to main content
Log in

Molecular tagging and marker-assisted selection of fiber quality traits using chromosome segment introgression lines (CSILs) in cotton

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Gossypium barbadense L is an important genetic resource to improve fiber quality of Gossypium hirsutum L., but breeders have generally encountered difficulties in introgression following whole genome crosses primarily due to genomic incompatibility, complex genetic basis and low efficiency of phenotypic evaluation and selection on fiber quality. Chromosome segment substitution lines (CSILs) are a powerful tool to dissect and introgress alien alleles while minimizing negative effects from alleles on other chromosome segments of the donor parent. In the present study, using a CSIL+F2 mapping strategy, three QTLs each for fiber length (FL), fiber strength (FS) and micronaire value (MIC) were identified on chromosome 11 and 1, explaining 6.23–10.73 % of the phenotypic variation in the F2:3 population. In addition, through marker-assisted backcrossing, the G. barbadense alleles of these QTLs were incorporated into two elite commerical Upland cotton cultivars, Lumianyan28 (L28) and Shannongmian6 (SNM6). Field evaluation indicated that 80 % of the BC2F3 lines containing the qFL-c11-1 and qFS-c11-1 from Hai7124 had significantly higher FL and FS, while only 14.5 % BC2F3 lines containing the qMIC-c1-1 in SNM6 genetic background showed significant decrease in MIC. Some BC2F3 lines with improved target fiber quality traits and without remarkable deviations in non-target lint yield components were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali ML, Sanchez PL, Yu S, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (Oryza sativa). Rice 3:218–234

    Article  Google Scholar 

  • Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS ONE 7:e45739. doi:10.1371/journal.pone.0045739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bowman DT, May OL, Calhoun DS (1996) Genetic base of upland cotton cultivars released between 1970 and 1990. Crop Sci 36:577–581

    Article  Google Scholar 

  • Cao Z, Wang P, Zhu X, Chen H, Zhang T (2014) SSR marker-assisted improvement of fiber qualities in Gossypium hirsutum using G. barbadense introgression lines. Theor Appl Genet 127:587–594. doi:10.1007/s00122-013-2241-3

    Article  PubMed  Google Scholar 

  • Chen X, Guo W, Liu B, Zhang Y, Song X, Cheng Y, Zhang L, Zhang T (2012) Molecular mechanisms of fiber differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLoS ONE 7:e30056. doi:10.1371/journal.pone.0030056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clement JD, Constable GA, Stiller WN, Liu SM (2012) Negative associations still exist between yield and fibre quality in cotton breeding programs in Australia and USA. Field Crop Res 128:1–7

    Article  Google Scholar 

  • Esbroeck GV, Bowman DT (1998) Cotton germplasm diversity and its importance to cultivar development. J Cotton Sci 2:121–129

    Google Scholar 

  • Felker GS (2001) Fiber quality and new spinning technologies. In: Dugger P, Richter DC (eds) Beltwide cotton conferences. National Cotton Council of America, Anaheim, pp 5–7

    Google Scholar 

  • Feng CH (2009) Construction and evaluation of G. barbadense cv. Pima90 CSILs in the genetic background of G. hirsutum cv. Handan208. Dissertation, Huazhong Agricultural University, Huazhong

  • Fu Y, Yuan DD, Hu WJ, Cai CP, Guo WZ (2013) Development of Gossypium barbadense chromosome 18 segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum and mapping of QTLs related to agronomic traits. Acta Agron Sin 39:21–28. doi:10.3724/SP.J.1006.2013.00021

    CAS  Google Scholar 

  • Guo WZ, Cai CP, Wang C, Zhao L, Wang L, Zhang TZ (2008) A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom 9:314. doi:10.1186/1471-2164-9-314

    Article  Google Scholar 

  • Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L, Zhou J, Song X, Sun X, Zhang T (2013) Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integ Plant Biol 55:759–774

    Article  CAS  Google Scholar 

  • Gutierrez OA, Basu S, Saha S, Jenkins JN, Shoemaker DB, Cheatham C, McCarty JC Jr (2002) Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci 42:1841–1847

    Article  Google Scholar 

  • Hallahan C (1995) Data analysis using SAS. Socio Meth Res 23:373–391. doi:10.1177/0049124195023003006

    Article  Google Scholar 

  • He D, Lin Z, Zhang X, Nie Y, Guo X, Zhang Y, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197

    Article  CAS  Google Scholar 

  • Holland J (2001) Epistasis and plant breeding. Plant Breeding Rev 21:27–92

    CAS  Google Scholar 

  • Jenkins JN, McCarty JC, Wu JX, Hayes R, Stelly D (2012) Genetic effects of nine Gossypium barbadense L. chromosome substitution lines in top crosses with five elite Upland cotton G. hirsutum L. cultivars. Euphytica 187:161–173

    Article  Google Scholar 

  • Kohel RJ, Yu J, Park YH (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenic 12:172–175

    Article  Google Scholar 

  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140. doi:10.2135/cropsci2005.0123

    Article  CAS  Google Scholar 

  • Lacape JM, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C (2009) A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet 119:281–292

    Article  PubMed  CAS  Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palai O, Georges S, Giband M, de Assuncao H, Barroso PA, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132. doi:10.1186/1471-2229-10-132

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan M, Yang Z, Shi Y, Ge R, Li A, Zhang B, Li J, Shang H, Liu A, Wang T, Yuan Y (2011) Assessment of substitution lines and identification of QTL related to fiber yield and quality traits in BC4F2 and BC4F3 populations from G. hirsutum × G. barbadense. Sci Agric Sin 44:3086–3097

    CAS  Google Scholar 

  • Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart JM (2005) Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed 124:180–187

    Article  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13

    Google Scholar 

  • McKenzie WH (1970) Fertility relationships among interspecific hybrid progenies of Gossypium. Crop Sci 10:571–574

    Article  Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Paterson A, Boman R, Brown S, Chee P, Gannaway J, Gingle A, May O, Smith WC (2004) Reducing the genetic vulnerability of cotton. Crop Sci 44:1900–1901

    Article  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC, Hayes R, Stelly DM (2011) Delineation of interspecific epistasis on fiber quality traits in Gossypium hirsutum by ADAA analysis of intermated G. barbadense chromosome substitution lines. Theor Appl Genet 122:1351–1361

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty Stelly DM (2013) Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines. Theor Appl Genet 126:109–117

    Article  PubMed  CAS  Google Scholar 

  • Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14:776. doi:10.1186/1471-2164-14-776

    Article  CAS  Google Scholar 

  • Shao Q, Zhang F, Tang S, Liu Y, Fang X, Liu D, Liu D, Zhang J, Teng Z, Paterson AH, Zhang Z (2014) Identifying QTL for fiber quality traits with three upland cotton (Gossypium hirsutum L.) populations. Euphytica, doi: 10.1007/s10681-014-1082-8

  • Sharp PJ, Johnston S, Brown G, McIntosh RA, Pallotta M, Carter M, Bariana HS, Khatkar S, Lagudah ES, Singh RP, Khairallah M, Potter R, Jones MGK (2001) Validation of molecular markers for wheat breeding. Aust J Agric Res 52:1357–1366. doi:10.1071/AR01052

    Article  CAS  Google Scholar 

  • Song X, Wang K, Guo W, Zhang J, Zhang T (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome 48:378–390

    Article  PubMed  CAS  Google Scholar 

  • Stephens SG (1949) The cytogenetics of speciation in Gossypium. I. Selective elimination of the donor parent genotype in interspecific backcrosses. Genetics 34:627–637

    PubMed Central  Google Scholar 

  • Thomas W (2003) Prospects for molecular breeding of barley. Ann Appl Biol 142:1–12. doi:10.1111/j.1744-7348.2003.tb00223.x

    Article  CAS  Google Scholar 

  • Ulloa M, Meredith WR Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170

    CAS  Google Scholar 

  • Van OJ, Voorrips RE (2001) JoinMap® Version 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  PubMed  CAS  Google Scholar 

  • Wang ZW (2009) Construction and genetic evaluation of single segment substitution lines by molecular marker-assisted selection. Dissertation, Huazhong Agricultural University, Huazhong

  • Wang F, Gong Y, Zhang C, Liu G, Wang L, Xu Z, Zhang J (2011) Genetic effects of introgression genomic components from sea island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 181:41–53

    Article  Google Scholar 

  • Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T (2012) Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 124:1415–1428

    Article  PubMed  Google Scholar 

  • Yang C, Guo W, Li G, Gao F, Lin S, Zhang T (2008a) QTL mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plan Sci 174:290–298

    Article  CAS  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Zhu J (2008b) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yang Z, Li J, Li A, Zhang B, Liu G, Li J, Shi Y, Liu A, Jiang J, Wang T, Yuan Y (2009) Developing chromosome segment substitution lines (CSSLs) in, cotton (Gossypium) using advanced backcross and MAS. Mol Plant Breed 2:233–241

    Google Scholar 

  • Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genom 12:15. doi:10.1186/1471-2164-12-15

    Article  CAS  Google Scholar 

  • Yu JZ, Kohel RJ, Fang DD, Cho J, Van Deynze A, Ulloa M, Hoffman SM, Pepper AE, Stelly DM, Jenkins JN, Saha S, Kumpatla SP, Shah MR, Hugie WV, Percy RG (2012) A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. Genetics 2:43–58

    CAS  Google Scholar 

  • Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang J (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    Article  PubMed  Google Scholar 

  • Zhang JF, Percy RG (2007) Improving Upland cotton by introducing desirable genes from Pima cotton. World Cotton Res Conf. http://wcrc.confex.com/wcrc/2007/techprogram/P1901.HTM

  • Zhang J, Wu YT, Guo WZ, Zhang TZ (2000) Fast screening of microsatellite markers in cotton with PAGE/silver staining. Acta Gossypii Sin 12:267–269

    CAS  Google Scholar 

  • Zhang J, Dan Y, Liang Y, Gu Y, Zhang B, Zhang B, Li J, Gong J, Liu A, Shang H, Wang T, Gong M, Yuan Y (2012) Evaluation of yield and fiber quality traits of chromosome segments substitution lines population (BC5F3 and BC5F3:4) in cotton. J Plant Genet Resour 13(9):773–781

    Google Scholar 

  • Zhu Y, Wang P, Guo W, Zhang T (2010) Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agron Sin 36(8):1318–1323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported in part by grants from the System of Modern Agriculture Industrial Technology (SDAIT-07-011-02), the Science and Technology Development Project (2012GGB01026), the Natural Science foundation (ZR2013CM005) and the Agricultural Seed Project (cotton variety development, 2011–2013; cotton germplasm innovation, 2013) of Shandong Province. Yuping Guo and Xian Guo contributed to this work equally. We thank Lanxiang Wang and Jinling Wang of Delinong Seed Company, Dezhou, China, for their help in field management and cultivation practices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianliang Song or Xuezhen Sun.

Additional information

Yuping Guo and Xian Guo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Guo, X., Wang, F. et al. Molecular tagging and marker-assisted selection of fiber quality traits using chromosome segment introgression lines (CSILs) in cotton. Euphytica 200, 239–250 (2014). https://doi.org/10.1007/s10681-014-1150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1150-0

Keywords

Navigation