Skip to main content
Log in

Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: Development and prospects

  • Published:
Fibre Chemistry Aims and scope

Abstract

The scientific principles of direct dissolution of cellulose in the NMMO—water system demonstrate the major possibility of obtaining concentrated spinning solutions and spinning hydrated cellulose fibres from them. The specific features of the properties of NMMO (high boiling point and insufficient thermal stability) that dissolves the NMMO—water system (narrow concentration range, optimum for dissolution of cellulose) makes it necessary to recycle the washing water by evaporating it, which causes high power consumption for this process. It is expedient to examine the possibilities of membrane technologies, including electrodialysis, for solving problems of recycling the solvent and cutting power consumption. However, this path only allows partially concentrating used washing water, since there is the danger of crystallization of NMMO di-and monohydrate. Spinning through an air gap from highly viscous solutions with long relaxation times at high spinneret draw ratios results in highly oriented fibres with high tensile rigidity (high deformation modulus). Fabrication of fibres whose properties correspond to ordinary viscose fibres will perhaps require “going away” from highly viscous solutions to a lower concentration and spinning by the ordinary wet method, but the volume of solvent used increases significantly, recycling it is more difficult, and power consumption increases. For the same reason of high orientation, the fibres exhibit important fibrillation when wet, and a “peach skin” effect is formed in the finished textiles. To reduce fibrillation, special treatments of the fabrics must be used, biofinishing, for example. During use of the articles, fibrillation can reappear, in laundering, for example. The technology for fabricating fibres of the Lyocell type requires solving many problems. Developing research on selecting alternative solvents and dissolving systems for direct dissolution of cellulose to obtain concentrated spinning solutions is simultaneously useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. Rogovin and N. N. Shorygina, Chemistry of Cellulose and Its Satellites [in Russian], Goskhimizdat, Moscow (1953).

    Google Scholar 

  2. Z. A. Rogovin, Cellulose Chemistry [in Russian], Khimiya, Moscow (1972).

    Google Scholar 

  3. G. Jame, in: Cellulose and Cellulose Derivatives, N. M. Bikales and L. Segal (eds.), Wiley-Interscience, New York (1971).

    Google Scholar 

  4. S. P. Papkov and V. G. Kulichikhin, Khim. Volokna, No. 2, 29 (1980).

  5. L. K. Golova, V. G. Kulichikhin, and S. P. Papkov, Vysokomolek. Soedin., 28A, No. 9, 1795–1809 (1986).

    Google Scholar 

  6. G. A. Petropavlovskii, A. M. Bochek, and V. M. Shek, Khim. Drevesiny, No. 2, 3–21 (1987).

  7. S. P. Papkov and I. P. Baksheev (eds.), Physicochemical Principles of Production of Hydrated Cellulose Fibres by Nontraditional Methods [in Russian], VNIIVproekt, Mytishchi (1989).

    Google Scholar 

  8. D. D. Grinshpan, Nonaqueous Solvents of Cellulose [in Russian], Izd. Unversitetskoe, Minsk (1991).

    Google Scholar 

  9. N. P. Novoselov, E. Tager, and E. S. Sashina, Vestn. Sankt-Peterburgsk. Un-ta Tekhnol. Dizaina, No. 1, 204–215 (1997).

  10. N. P. Novoselov and E. S. Sashina, Vestn. Sankt-Peterburgsk. Un-ta Tekhnol. Dizaina, No. 5, 132–142 (2001).

  11. Mell. Intern., 8, 96–97 (May, 2002).

  12. Lenzinger Ber, No. 76, 131 (1997).

  13. V. A. Platonov, Yu. Ya. Belousov, et al., Khim. Volokna, No. 1, 27–28 (1983).

  14. A. N. Sokira and M. M. Iovleva, Khim. Volokna, No. 5, 26–27 (1985).

  15. A. Chanzy, S. Nawrol, et al., J. Polym. Sci. Polym. Phys. Ed, 29, No. 10, 1909–1924 (1982).

    Article  Google Scholar 

  16. H. A. Coulsay and S. B. Smith, Titk Symposium, Separate reprint, Rudolstadt (1995), pp. 1–32.

  17. W. Albrecht, M. Reintjes, and B. Wulfhorst, Che. Fibers Intern., 47, No. 4, 298–304 (1997).

    Google Scholar 

  18. Lenzinger Ber, No. 74, 106 (1974).

  19. Lenzinger Ber, No. 75, 117 (1996).

  20. “First International Lyocell Symposium 1997. “Experience Lyocell”, Lenzinger Ber, No. 77, 64 (1997).

  21. “The “Evergreen.” Cellulosic fibers presented at different conferences in 1997,” Lenzinger Ber, No. 78, 72 (1998).

  22. C. Woodings (ed.), Regenerated Cellulose Fibers, Woodhead Publ., Cambridge (2000).

    Google Scholar 

  23. Special Issue “Experience Lyocell II,” Lenzinger Ber, No. 80, 118 (2001).

  24. F. Meister, D. Vorbach, et al., Chem. Fibers Int., 48, No. 1, 32–35 (1998).

    CAS  Google Scholar 

  25. C. Michels and S. Kosan, Chem. Fiber Int., 50, No. 6, 556–561 (2000).

    CAS  Google Scholar 

  26. Ch. Rohrer, P. Retzl, and H. Firgo, Chem Fibers Int. Man-Made Fiber Year Book (2001), pp. 26–28.

  27. K. E. Perepelkin, Khim. Volokna, No. 5, 3–17; No. 6, 3–14 (2000).

  28. R. Bauer, H. Burger, and E. Taeger, Chem. Fibers Intern., 50, No. 4, 365–369 (2000).

    CAS  Google Scholar 

  29. K. E. Perepelkin, Vestn. Sankt-Peterburgsk. Un-ta Tekhnol. Dizaina, No. 9, 47–73 (2003).

  30. P. Kryuger, Khim. Volokna, No. 1, 31–34 (1996).

  31. Kh. Byurger, P. Maron, et al., Khim. Volokna, No. 1, 35–39 (1996).

  32. A. Diener and G. Raouzeous, Chem. Fibers Intern., 49, No. 2, 40–42 (1999).

    CAS  Google Scholar 

  33. L. K. Golova, Khim. Volokna, No. 1, 13–1 (1996).

  34. L. K. Golova, Ros. Khim. Zk, 46, No. 1, 49–57 (2002).

    CAS  Google Scholar 

  35. T. Hotberg and S. Thumm, Mell. Intern., No. 3, 200–204; No. 1, 83–85 (1999).

  36. M. Nicolai, A. Nechwatal, and K.-P. Mieck, Text. Res. J., 66, No. 9, 575–580 (1996).

    Article  Google Scholar 

  37. T. Eynon, “Fibrillation-free Lyocell fibers. An introduction to Tencell A 100,” J. Text. Monthly, 70–75 (December 1998).

  38. Ch. Rohrer and H. Firgo, Chem. Fibers Intern., 50, No. 6, 552–555 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimicheskie Volokna, No. 2, pp. 58–64, March–April, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: Development and prospects. Fibre Chem 39, 163–172 (2007). https://doi.org/10.1007/s10692-007-0032-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-007-0032-9

Keywords

Navigation