Skip to main content
Log in

Physicochemical principles of spinning of natural fibroin fibres and ways of using them in chemical fibre technology. Part 2. Structure and properties of natural fibroin fibres. Use of principles of biomimetics in developing chemical fibre technologies

  • Chemistry and Technology of Chemical Fibres
  • Published:
Fibre Chemistry Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. E. Perepelkin, Structure and Properties of Fibres [in Russian], Khimiya, Moscow (1985).

    Google Scholar 

  2. K. E. Perepelkin, Fibres Textiles East. Eur., 39–43 (April/June, 1998).

  3. F. Lukas, K. M. Rudall, et al. (HRSG), in: Comprehensive Biochemistry, Vol. 26B, Elsevier, Amsterdam (1968).

    Google Scholar 

  4. F. Lucas, J. T. B. Shaw, and S. G. Smith, J. Text. Inst., 46, No. 6, T440–T452 (1955).

    Google Scholar 

  5. F. Lucas, Nauka Zhizn’, 30, No. 7, 35–38 (1964); “Spiders and their silks,” Discovery, 25, 20–26 (1964).

    Google Scholar 

  6. K. E. Perepelkin, V. S. Matveev, and A. V. Volokhina, Khim. Volokna, No. 3, 17–24 (1984); No. 4, 14–19.

  7. E. P. Akim and L. P. Perepechkin, Cellulose, Acetylcellulose, Acetate Fibres [in Russian], Lesnaya Prom-st’, Moscow (1964).

    Google Scholar 

  8. K. E. Perepelkin, in: High-Performance Fibres, J. W. S. Hearle (ed.), Woodhead, Cambridge (2001), pp. 115–132; 146–154.

    Google Scholar 

  9. K. E. Perepelkin, Ros. Khim. Zh., 46, No. 1, 31–48 (2002).

    CAS  Google Scholar 

  10. K. E. Perepelkin, J. Van den Heuvel, et al., in: Proceedings of the Conference “Polymer Fibers 2006”, CD-disk, Sect 10, UNIST, Manchester (2006), pp. 1–4.

    Google Scholar 

  11. K. E. Perepelkin, V. V. Podosenov, and A. A. Konkin, Khim. Volokna, No. 1, 11–13 (1970).

  12. K. E. Perepelkin, Physicochemical Principles of Spinning Chemical Fibres [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  13. A. P. Levitt (ed.), Whisker Technology, Wiley Interscience, New York (1971).

    Google Scholar 

  14. M. S. Aslanova, Glass Fibres [in Russian], Khimiya, Moscow (1979).

    Google Scholar 

  15. H. S. Katz and J. V. Milevsky (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold, New York (1978).

    Google Scholar 

  16. F. Fourne, Synthetic Fibers, Hanzer, Munich (1999).

    Google Scholar 

  17. H.-J. Koslowski, Dictionary of Man-Made Fibers, Int/Business Press, Frankfurt-am-Main (1998).

    Google Scholar 

  18. K. E. Perepelkin and V. V. Podosenov, Khim. Volokna, No. 3, 28–30 (1970).

  19. V. K. Gusev, Z. D. Tul’guk, and T. V. Spitsynna, in: Bicomponent Fibres and Yarns [in Russian], A. S. Chegol’ (ed.), Khimiya, Moscow (1976).

    Google Scholar 

  20. E. A. Pakshver, in: Carbochain Synthetic Fibres [in Russian], K. E. Perepelkin (ed.), Khimiya, Moscow (1973), pp. 7–164.

    Google Scholar 

  21. K. E. Perepelkin, in: Carbochain Synthetic Fibres [in Russian], K. E. Perepelkin (ed.), Khimiya, Moscow (1973), pp. 165–354.

    Google Scholar 

  22. K. E. Perepelkin and M. D. Perepelkina, Water-Soluble Fibres and Films [in Russian], Khimiya, Leningrad (1977).

    Google Scholar 

  23. S. P. Papkov, Theoretical Principles of Chemical Fibre Production [in Russian], Khimiya, Moscow (1990).

    Google Scholar 

  24. Shimizu Yoshiuki, Nichon Sansigaku Dzassi (J. Sericult. Sci. Jpn., 47, No. 5, 417–420 (1978).

    Google Scholar 

  25. A. P. Khamraev, in: Problems in the Physical Chemistry and Technology of Natural Silk [in Russian], B. E. Geller (ed.), TPI im. A.-B.Beruni, Tashkent (1978), pp. 119–142.

    Google Scholar 

  26. M. P. Vasil’ev, Collagen Filaments, Fibre and Film Materials [in Russian], SPbGUTD, St. Petersburg (2004).

    Google Scholar 

  27. P. F. Hamlin and B. J. McCarthy, Rev. Prog. Color Relat. Top., 31, 15–20 (2001).

    Google Scholar 

  28. K. Heinemann, K.-H. Guhrs, and K. Weisshart, Chem. Fiber Intern., 50, No. 1, 44–48.

  29. K. Heinemann and K.-H. Guhrs, in: Preferably to Fibers, 41st International Man-Made Fibers Congress, Paper, CD Disk, Dornbirn (September 18–20, 2002).

  30. Nexia Biotechnologies Inc., html//www.nexiabiotech.com.

  31. A. Lazaris, S. Arcidiacono, et al., “Spider silk fibres spun from soluble recombinant silk produced in mammalian cells,” Science, 295, 472–476 (2002).

    Article  CAS  Google Scholar 

  32. Han Chang, Jun Magpshi, et al., J. Appl. Polym. Sci., 86, 1817–1821 (2002).

    Article  Google Scholar 

  33. G. I. Kudryavtsev, V. Ya. Varshavskii, et al., Reinforcing Chemical Fibres for Composite Materials [in Russian], Khimiya, Moscow (1992).

    Google Scholar 

  34. M. Landa, Chem. Prumysl., 4, No. 5, 167–174 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimicheskie Volokna, No. 5, pp. 9–15, September–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. Physicochemical principles of spinning of natural fibroin fibres and ways of using them in chemical fibre technology. Part 2. Structure and properties of natural fibroin fibres. Use of principles of biomimetics in developing chemical fibre technologies. Fibre Chem 39, 363–371 (2007). https://doi.org/10.1007/s10692-007-0079-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-007-0079-7

Keywords

Navigation