Skip to main content
Log in

The role of nitrogen atoms in forming the carbon structure in the carbonization of polymer composites

  • Published:
Fibre Chemistry Aims and scope

Data have been used from X-ray photoelectron spectroscopy, small-angle X-ray spectroscopy, nuclear magnetic resonance, IR Fourier spectroscopy, electron spectroscopy, and other current methods for polyacrylonitrile, polypyromellitimide, hydrated cellulose, hard coals, and various model compounds to examine the effects of the nitrogen atoms on carbonization and graphitization. The nitrogen atoms are found to have multiple effects on the thermochemical and thermophysical parameters of the polymer carbonization over a wide temperature range. In the derivation of the carbon structures, the nitrogen acts as a messenger combined agent, which gives rise to heterorings, which are transformed into intermediate aromatic compounds, which form the basis of the matrix synthesis consisting of ordered graphite-type structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Artem'ev, I. V. Eremin, et al., Formation Conditions and Characteristic Features of Dynamically Active Coals [in Russian], Nedra Communications Ltd, Moscow (1999).

    Google Scholar 

  2. A. A. Krichko, S. G. Gagarin, and S. S. Makar'ev, Khim. Tv. Topliva, No. 6, 27–41 (1994).

  3. A. M. Gyul'maliev, G. S. Golovin, and T. G. Gladun, Theoretical Principles of Coal Chemistry [in Russian], MGGU, Moscow (2003).

    Google Scholar 

  4. V. E. Rakovskii, Khim. Tv. Topliva, No. 4, 148–156 (1969).

  5. A. S. Fialkov, Carbon, Interlayer Compounds, and Composites Based On Them [in Russian], Aspekt-Press, Moscow (1997).

    Google Scholar 

  6. V. Ya. Varshavskii, Carbon Fibers [in Russian], Varshavskii, Moscow (2005).

    Google Scholar 

  7. N. A. Adrova, M. M. Bessonov, et al., Polyimides: A New Class of Thermally Stable Polymers [in Russian], Nauka, Leningrad (1968).

    Google Scholar 

  8. T. H. Johnston and C. A. Gaulin, J. Macromol. Sci. Chem., A.3(6), 1161–1182 (1969).

    Article  Google Scholar 

  9. B. M. Kovarskaya, A. B. Blyumenfel'd, and I. I. Levantovskaya, Thermal Stability of Heterochain Polymers [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

  10. Yu. N. Sazanov, Thermal Analysis of Polyimides: PhD Thesis [in Russian], Leningrad (1982).

  11. Yu. N. Sazanov, T. Sekei, et al., Khim. Volokna, No. 1, 25–28 (1977).

  12. Yu. N. Sazanov, J. Thermal Anal., 23, No. 1, 65–71 (1982).

    Article  CAS  Google Scholar 

  13. M. M. Koton, M. I. Bessonov, and Yu. N. Sazanov, Plast. Massy, No. 5, 22–26 (1981).

  14. M. I. Bessonov, M. M. Koton, et al., Polyimides: A Class of Thermally Stable Polymers [in Russian], Nauka, Leningrad (1983).

    Google Scholar 

  15. Yu. N. Sazanov and T. Szekely, J. Anal. Appl. Pyr., 2, No. 3, 156–161 (1983).

    Google Scholar 

  16. Yu. N. Sazanov, A. V. Gribanov, et al., Vysokomol. Soed., A.27, No. 11, 2351–2356 (1985).

    Google Scholar 

  17. A. Toirov, Yu. N. Sazanov, et al., Dokl. AN Tadzh. SSR, 24, No. 3, 173–176 (1981).

    CAS  Google Scholar 

  18. Yu. N. Sazanov, L. A. Shibaev, et al., Dokl. AN SSSR, 265, No. 4, 917–921 (1982).

    CAS  Google Scholar 

  19. A. V. Gribanov, L. A. Shibaev, et al., J. Thermal. Anal., 32, No. 3, 815–823 (1987).

    Article  CAS  Google Scholar 

  20. A. Toth, I. Bertoti, et al., Proc. Eur. Conf. Appl. Surface and Interface Anal., Veldhoven, Netherlands (Oct. 1985).

  21. A. Toth, I. Bertoti, et al., Surface and Interface Anal., 8, 261–266 (1986).

    Article  CAS  Google Scholar 

  22. T. A. Antonova, A. V. Shchukarev, et al., Vysokomol. Soed., 29, No. 8, 584–589 (1987).

    CAS  Google Scholar 

  23. A. V. Gribanov, R. E. Teeyaer, et al., Vysokomol. Soed., 26, No. 11, 834–838 (1984).

    CAS  Google Scholar 

  24. C. Z. Hu, J. B. Anrade, and P. Dryden, J. Appl. Sci., 35, 1149–1160 (1988).

    Article  CAS  Google Scholar 

  25. L. G. Gladkova, E. F. Kolpikova, et al., Uspekhi Khimii, 57, No. 10, 1742–1762 (1988).

    CAS  Google Scholar 

  26. S. D. Bruck, Polymer, 5, 435–441 (1964).

    Article  CAS  Google Scholar 

  27. Yu. N. Sazanov, G. N. Fedorova, et al., Vysokomol. Soed., 25A, No. 5, 949 (1983).

    Google Scholar 

  28. A. S. Fialkov, E. F. Kolpikova, et al., Vysokomol. Soed., 275, No. 11, 818–821 (1985).

    Google Scholar 

  29. A. V. Gribanov and Yu. N. Sazanov, Zhurn. Prikl. Khimii, 73, No. 10, 1705–1709 (2000).

    CAS  Google Scholar 

  30. S. F. Dinetz, T. J. Bird, et al., J. Appl. Pyr., 63, 241–249 (2002).

    Article  CAS  Google Scholar 

  31. R. Srinivasan, R. R. Hall, et al., Synth. Met., 66, 301–305 (1994).

    Article  CAS  Google Scholar 

  32. H. Konno, H. Oka, et al., Carbon, 37, No. 7, 887–895 (1999).

    Article  CAS  Google Scholar 

  33. H. Konno, H. Shiba, et al., Carbon, 39, No. 12, 1731–1740 (2001).

    Article  CAS  Google Scholar 

  34. M. Inagaki, T. Ibuki, and T. Takeichi, J. Appl. Polymer Sci., 44, 521–525 (1992).

    Article  CAS  Google Scholar 

  35. Y. Hishiyama, A. Yoshida, et al., Carbon, 30, 157–161 (1992).

    Google Scholar 

  36. Y. Hishiyama, K. Igarashi, et al., Carbon, 35, 657–662 (1997).

    Article  CAS  Google Scholar 

  37. H. Konno, T. Nakahashi, and M. Inagaki, Carbon, 35, 669–672 (1997).

    Article  CAS  Google Scholar 

  38. T. Nakahashi, H. Konno, and M. Inagaki, Solid State Ionites, No. 113–115, 73–77 (1998).

  39. K. Stanczyk, R. Dziembaj, et al., Carbon, 33, No. 310, 1383–1392 (1995).

    Article  CAS  Google Scholar 

  40. H. Schmiers, J. Friebel, et al., Carbon, 37, 1965–1978 (1999).

    Article  CAS  Google Scholar 

  41. K. A. Grant, Q. Zhu, and K. M. Thomas, Carbon, 32, 883–889 (1994).

    Article  CAS  Google Scholar 

  42. J. R. Pels, F. Kapteijn, et al., Carbon, 33, 1641–1653 (1995).

    Article  CAS  Google Scholar 

  43. R. J. J. Jansen and H. van Bekkum, Carbon, 33, No. 8, 1021–1027 (1995).

    Article  CAS  Google Scholar 

  44. R. J. J. Jansen and H. van Bekkum, Carbon, 32, No. 9, 1507–1514 (1994).

    Article  CAS  Google Scholar 

  45. M. Wan, J. Li, and S. Li, J. Appl. Polymer Sci., 61, No. 5, 793–798 (1996).

    Article  CAS  Google Scholar 

  46. I. P. Dobrovol'skaya, M. V. Mokeev, et al., Zhurn. Prikl. Khimii, 79, No. 7, 1190–1192 (2006).

    Google Scholar 

  47. I. P. Dobrovol'skaya, Z. Yu. Chereiskii, and I. M. Stark, Vysokomol. Soed., 23A, No. 6, 1261–1267 (1981).

    Google Scholar 

  48. I. A. Piskunova, Development of Processes for Making Carbon Fiber Materials by the Use of Pyrolytic Additives: MSc Thesis [in Russian], SPGUTD, St. Petersburg (2003).

    Google Scholar 

  49. A. A. Lysenko, Principles of Resource-Saving Technologies for Making Activated Carbon Fibers, With Their Properties and Uses: PhD Thesis [in Russian], SPGUTD, St. Petersburg (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 4, pp. 53–61, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazanov, Y.N., Gribanov, A.V. & Lysenko, V.A. The role of nitrogen atoms in forming the carbon structure in the carbonization of polymer composites. Fibre Chem 40, 355–364 (2008). https://doi.org/10.1007/s10692-009-9067-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-009-9067-4

Keywords

Navigation