Skip to main content
Log in

Carbon Nanotubes: Properties, Synthesis, and Application

  • Published:
Fibre Chemistry Aims and scope

This review describes features of the structure of carbon nanotubes, their principal characteristics, methods of synthesis, and regions of potential application. Most attention has been paid to the use of nanotubes in catalysis. Examples are given of the functionalization of nanotubes and also their use as catalysts, catalytic additives, and catalyst supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. J. Wang, Z. Liu, Chinese Sci. Bulletin, 57, No. 2, 167-180 (2012).

    Article  CAS  Google Scholar 

  2. S. Chernyak et al., Appl. Catalysis A: General, 523, 221-229 (2016).

    Article  CAS  Google Scholar 

  3. T. Le, M. Kim, et al., Catalysis Today, 293-294, 89-96 (2017).

    Article  CAS  Google Scholar 

  4. M. Tsai, T. Yeh, C. Tsai, Electrochem. Communications, 8, No. 9, 1445-1452 (2006).

    Article  CAS  Google Scholar 

  5. H. Cheng, Q. Yang, C. Liu, Carbon, 39, No. 10, 1447-1454 (2001).

    Article  CAS  Google Scholar 

  6. W. Hoenlein, et al., IEEE Transact. on Components a. Packaging Technol., 27, No. 4, 629-634 (2004).

    Article  CAS  Google Scholar 

  7. A. Wu, T. Chou, Materials Today, 15, No. 7-8, 302-310 (2012).

    Article  CAS  Google Scholar 

  8. R. Das, M. Ali, Desalination, 336, No. 1, 97-109 (2014).

    Article  CAS  Google Scholar 

  9. E. Ganesh, IJITEE, 2013, No. 4, 311-320.

  10. Y. Pan, Y. Liu, et al., Materials Letters, 65, No. 23-24, 3362-3364 (2011).

    Article  CAS  Google Scholar 

  11. N. Saifuddin, A. Raziah, A. Junizah, J. Chemistry, 1-18 (2013).

  12. O. Kharissova, B. Kharisov, RSC Adv., 4, No. 58, 30807-30815 (2014).

    Article  CAS  Google Scholar 

  13. H. Kim et al, Sci. Reports, 7, No. 1, 1-7 (2017).

    Article  CAS  Google Scholar 

  14. N. Fakhri, D. Tsyboulski, et al., Proc. National Academy Sci., 106, No. 34, 14219-14223 (2009).

    Article  Google Scholar 

  15. H. Hiura, T. Ebbesen, et al., Nature, 367, No. 6459, 148-151 (1994).

    Article  CAS  Google Scholar 

  16. T. Ebbesen, T. Takada, Carbon, 33, No. 7, 973-978 (1995).

    Article  CAS  Google Scholar 

  17. H. He, B. Pan, Frontiers Phys. China, 4, No. 3, 297-306 (2009).

    Article  Google Scholar 

  18. A. Kukovecz et al., J. Phys. Chem. B, 106, No. 25, 6374-6380 (2002).

    Article  CAS  Google Scholar 

  19. J. Chen et al., J. Phys. Chem. B, 105, No. 13, 2525-2528 (2001).

    Article  CAS  Google Scholar 

  20. C. Wang et al., J. Phys. Chem. B, 110, No. 21, 10266-10271 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Z. Zhang, X. Xu, Appl. Surface Sci., 346, 520-527 (2015).

    Article  CAS  Google Scholar 

  22. X. Lu, Z. Chen, Chem. Rev., 105, No. 10, 3643-3696 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. B. Kaushik, M. Majumder, Springer Briefs in Applied Sciences and Technology (2015), No. 9788132220466.

  24. H. Dai, A. Javey, et al., Nano, 1, No. 1, 1-13 (2006).

    Article  CAS  Google Scholar 

  25. A. Balandin, Nature Materials, 10, No. 8, 569-581 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Z. Han, A. Fina, Progr. Polymer Sci. (Oxford), 36, No. 7, 914-944 (2011).

    Article  CAS  Google Scholar 

  27. J. Hone, et al., Appl. Phys. A: Materials Sci. & Proc., 74, No. 3, 339-343 (2002).

    Article  CAS  Google Scholar 

  28. A. Marconnet, M. Panzer, K. Goodson, Rev. Modern Phys., 85, No. 3, 1295-1326 (2013).

    Article  CAS  Google Scholar 

  29. R. Salaway, L. Zhigilei, Intern. J. Heat and Mass Transfer, 70, 954-964 (2014).

    Article  CAS  Google Scholar 

  30. J. Lu, Phys. Rev. Letters, 79, No. 7, 1297-1300 (1997).

    Article  CAS  Google Scholar 

  31. A. Krishnan, E. Dujardin, T. Ebbesen, Phys. Rev. B – Condensed Matter and Materials Phys., 58, No. 20, 14013-14019 (1998).

    Article  CAS  Google Scholar 

  32. N. Arora, N. Sharma, Diamond and Related Materials, 50, 135-150 (2014).

    Article  CAS  Google Scholar 

  33. R. Bacon, J. Appl. Phys., 31, No. 2, 283-290 (1960).

    Article  Google Scholar 

  34. W. Krätschmer, L. Lamb, et al., Nature, No. 6291, 354-358 (1990).

  35. S. Iijima, Nature, 354, No. 6348, 56-58 (1991).

    Article  CAS  Google Scholar 

  36. S. Iijima, T. Ichihashi, Nature, 363, No. 6430, 603-605 (1993).

    Article  CAS  Google Scholar 

  37. A. Dupuis, Progr. in Materials Sci., 50, No. 8, 929-961 (2005).

    Article  CAS  Google Scholar 

  38. M. Kumar, Y. Ando, Defense Sci J., 58, No. 4, 496-503 (2008).

    Article  CAS  Google Scholar 

  39. W. Hsu, P. Harris, et al., Nature, 377, No. 6551, 687 (1995).

    Article  CAS  Google Scholar 

  40. J. Gore, A. Sane, Carbon Nanotubes – Synthesis, Characterization, Applications, 121-146 (2011).

  41. Ö. Güler, E. Evin, Optoelectronics and Adv. Materials, Rapid Communications, 6, No. 1-2, 183-187 (2012).

    Google Scholar 

  42. S. Wu, G. Wen, et al., Phys. Chem. Chemical Phys., 17, No. 3, 1567-1571 (2015).

    Article  CAS  Google Scholar 

  43. B. Frank, J. Zhang, et al., Angew. Chemie. – Intern. Ed., 48, No. 37, 6913-6917 (2009).

    Article  CAS  Google Scholar 

  44. J. Zhang, X. Liu, et al., Science, 322, No. 5898, 73-77 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. C. Chen, J. Zhang, et al., Chem. Commun., 49, No. 207890, 8151-8553 (2013).

    Article  CAS  Google Scholar 

  46. X. Dong, H. Bin Zhang, Catalysis Letters, 85, No. 3-4, 237-246 (2003.

    Article  CAS  Google Scholar 

  47. J. Tessonnier, O. Ersen, et al., ACS nano, 3, No. 8, 2081-2089 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. P. Mierczynski, K. Vasilev, et al., Appl. Catalysis B: Environmental, 185, 281-294 (2016).

    Article  CAS  Google Scholar 

  49. P. Mierczynski, A. Mierczynska, et al., RSC Adv., 6, 81408-81413 (2016).

    Article  CAS  Google Scholar 

  50. S. Yin, B. Xu, B. Zhu, Catalysis Today, 93-95, 27-38 (2004).

    Article  CAS  Google Scholar 

  51. S. Bai, C. Huang, et al., Catalysis Communications, 22, 24-27 (2012).

    Article  CAS  Google Scholar 

  52. A. Tavasoli, S. Karimi, et al., J. Natural Gas Chemistry, 21, No. 5, 605-613 (2012).

    Article  CAS  Google Scholar 

  53. R. Abbaslou, A. Tavassoli, et al., Appl. Catalysis A: General, 367, No. 1-2, 47-52 (2009).

    Article  CAS  Google Scholar 

  54. J. Zhao, J. Lu, et al., Appl. Phys. Letters, 82, No. 21, 3746 (2003).

    Article  CAS  Google Scholar 

  55. C. Hu, J. Chinese Chem. Soc., 56, No. 2, 234-239 (2009).

    Article  CAS  Google Scholar 

  56. H. Du et al., J. Materials Chem. A, 2, No. 19, 7015-7019 (2014).

    Article  CAS  Google Scholar 

  57. W. Chen, Z. Fan, et al., J. Amer. Chem. Soc., 130, No. 29, 9414-9419 (2008).

    Article  CAS  Google Scholar 

  58. A. Tavasoli, M. Trépanier, et al., J. Chem. Eng. Data, 55, No. 8, 2757-2763 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maniecki.

Additional information

Translated from Khimicheskie Volokna, No. 4, pp. 45-48, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniecki, T., Shtyka, O., Mierczynski, P. et al. Carbon Nanotubes: Properties, Synthesis, and Application. Fibre Chem 50, 297–300 (2018). https://doi.org/10.1007/s10692-019-09979-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-019-09979-2

Navigation