Skip to main content
Erschienen in: Fire Technology 6/2020

25.05.2020

An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-Ion Battery Module Using Aerogel and Liquid Cooling Plate Together

verfasst von: Xiaolong Yang, Yongkang Duan, Xuning Feng, Tianyu Chen, Chengshan Xu, Xinyu Rui, Minggao Ouyang, Languang Lu, Xuebing Han, Dongsheng Ren, Zeping Zhang, Cheng Li, Shang Gao

Erschienen in: Fire Technology | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Preventing thermal runaway propagation is critical to improve the fire safety of electric vehicles. Experiments are conducted on the designed battery modules to study the effects of aerogel, liquid cooling plate, and their combination on the prevention mechanism of thermal runaway propagation. The characteristics of temperature, voltage, mass loss, and venting during the thermal runaway propagation process are compared and analyzed. The results indicate that: (1) adding the insulation material of aerogel can postpone the thermal runaway propagation, but may not completely cut-off the propagation process; (2) there is no obvious delay of thermal runaway propagation by adding the liquid cooling plate only, the propagation speed may be accelerated instead; (3) the thermal runaway propagation can be prevented by using aerogel and liquid cooling plate together. The study reminds us that safety design of battery thermal management system should consider the comprehensive heat transfer pathways in order to effectively prevent thermal runaway propagation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Han X, Ouyang M, Lu L et al (2014) A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J Power Sources 251:38–54CrossRef Han X, Ouyang M, Lu L et al (2014) A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J Power Sources 251:38–54CrossRef
2.
Zurück zum Zitat Jaewan K, Jinwoo O et al (2019) Review on battery thermal management system for electric vehicles. Appl Therm Eng 149:192–212CrossRef Jaewan K, Jinwoo O et al (2019) Review on battery thermal management system for electric vehicles. Appl Therm Eng 149:192–212CrossRef
3.
Zurück zum Zitat Lamb J, Orendorff C et al (2015) Failure propagation in multi cell lithium ion batteries. J Power Sources 283:517–523CrossRef Lamb J, Orendorff C et al (2015) Failure propagation in multi cell lithium ion batteries. J Power Sources 283:517–523CrossRef
4.
Zurück zum Zitat Zheng Y, Gao W et al (2019) An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties. J Energy Storage 24:100745CrossRef Zheng Y, Gao W et al (2019) An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties. J Energy Storage 24:100745CrossRef
5.
Zurück zum Zitat Ren D, Feng X et al (2017) An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J Power Sources 364:328–340CrossRef Ren D, Feng X et al (2017) An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J Power Sources 364:328–340CrossRef
6.
Zurück zum Zitat Chen K, Wang S et al (2017) Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy. Appl Therm Eng 123:177–186CrossRef Chen K, Wang S et al (2017) Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy. Appl Therm Eng 123:177–186CrossRef
7.
Zurück zum Zitat Lu L, Han X et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef Lu L, Han X et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef
8.
Zurück zum Zitat Wang Q, Jinhua S et al (2005) Lithium ion battery fire and explosion. Fire Saf Sci 8:375–382CrossRef Wang Q, Jinhua S et al (2005) Lithium ion battery fire and explosion. Fire Saf Sci 8:375–382CrossRef
9.
Zurück zum Zitat Huo Y, Rao Z, Liu X et al (2015) Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers Manag 89:387–395CrossRef Huo Y, Rao Z, Liu X et al (2015) Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers Manag 89:387–395CrossRef
10.
Zurück zum Zitat Lan C, Xu J, Qiao Y et al (2016) Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl Therm Eng 101:284–292CrossRef Lan C, Xu J, Qiao Y et al (2016) Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl Therm Eng 101:284–292CrossRef
11.
Zurück zum Zitat Zhang T, Gao Q, Wang G et al (2017) Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process. Appl Therm Eng 116:655–662CrossRef Zhang T, Gao Q, Wang G et al (2017) Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process. Appl Therm Eng 116:655–662CrossRef
12.
Zurück zum Zitat Jin L, Lee P, Kong X et al (2014) Ultra-thin minichannel LCP for EV battery thermal management. Appl Energy 113:1786–1794CrossRef Jin L, Lee P, Kong X et al (2014) Ultra-thin minichannel LCP for EV battery thermal management. Appl Energy 113:1786–1794CrossRef
13.
Zurück zum Zitat Feng X et al (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources 275:261–273CrossRef Feng X et al (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources 275:261–273CrossRef
14.
Zurück zum Zitat Feng X, He X et al (2015) Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery. Appl Energy 154:74–91CrossRef Feng X, He X et al (2015) Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery. Appl Energy 154:74–91CrossRef
15.
Zurück zum Zitat Man C, Sun Q, Li Y et al (2015) A thermal runaway simulation on a lithium titanate battery and the battery module. Energies 8:490–500CrossRef Man C, Sun Q, Li Y et al (2015) A thermal runaway simulation on a lithium titanate battery and the battery module. Energies 8:490–500CrossRef
16.
Zurück zum Zitat Wilke S, Schweitzer B et al (2017) Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources 340:51–59CrossRef Wilke S, Schweitzer B et al (2017) Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources 340:51–59CrossRef
17.
Zurück zum Zitat Xu J, Lan C et al (2017) Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl Therm Eng 110:883–890CrossRef Xu J, Lan C et al (2017) Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl Therm Eng 110:883–890CrossRef
18.
Zurück zum Zitat Mohammed A, Esmaeeli R et al (2019) Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway. Appl Therm Eng 160:114106CrossRef Mohammed A, Esmaeeli R et al (2019) Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway. Appl Therm Eng 160:114106CrossRef
19.
Zurück zum Zitat Feng X et al (2014) Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources 255:294–301CrossRef Feng X et al (2014) Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources 255:294–301CrossRef
20.
Zurück zum Zitat Frackowiak E, Beguin F et al (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef Frackowiak E, Beguin F et al (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef
21.
Zurück zum Zitat Feng X, Ouyang M et al (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267CrossRef Feng X, Ouyang M et al (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267CrossRef
22.
Zurück zum Zitat Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef
23.
Zurück zum Zitat Dubaniewicz TH, DuCarme JP (2013) Are lithium ion cells intrinsically safe. IEEE Trans Ind Appl 49:2451–2460CrossRef Dubaniewicz TH, DuCarme JP (2013) Are lithium ion cells intrinsically safe. IEEE Trans Ind Appl 49:2451–2460CrossRef
24.
Zurück zum Zitat Dubaniewicz TH, DuCarme JP (2014) Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air. J Loss Prev Process Ind 32:165–173CrossRef Dubaniewicz TH, DuCarme JP (2014) Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air. J Loss Prev Process Ind 32:165–173CrossRef
25.
Zurück zum Zitat Li W, Wang H, Ouyang M et al (2019) Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory. Energy Convers Manag 185:211–222CrossRef Li W, Wang H, Ouyang M et al (2019) Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory. Energy Convers Manag 185:211–222CrossRef
Metadaten
Titel
An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-Ion Battery Module Using Aerogel and Liquid Cooling Plate Together
verfasst von
Xiaolong Yang
Yongkang Duan
Xuning Feng
Tianyu Chen
Chengshan Xu
Xinyu Rui
Minggao Ouyang
Languang Lu
Xuebing Han
Dongsheng Ren
Zeping Zhang
Cheng Li
Shang Gao
Publikationsdatum
25.05.2020
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 6/2020
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-00995-x

Weitere Artikel der Ausgabe 6/2020

Fire Technology 6/2020 Zur Ausgabe