Skip to main content
Log in

Seaside operations in container terminals: literature overview, trends, and research directions

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Seaside operations are considered the bottleneck operation in most container terminals around the world. This paper presents an in-depth updated overview of the seaside operations at container terminals and highlights current trends and developments. We review and classify scientific journal papers on container terminal seaside operations, published between 2004 and 2012. The paper also discusses and challenges the current operational paradigms on seaside operations. Lastly, the paper identifies new avenues for academic research based on current trends and developments in the container terminal industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arango C, Cortés P, Muñuzuri J, Onieva L (2011) Berth allocation planning in Seville inland port by simulation and optimization. Adv Eng Inform 25:452–461

    Google Scholar 

  • Bierwirth C, Meisel F (2009) A fast heuristic for quay crane scheduling with interference constraints. J Sched 12:345–360

    MATH  MathSciNet  Google Scholar 

  • Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202:615–627

    MATH  Google Scholar 

  • Blazewicz J, Cheng TCE, Machowiak M, Oguz C (2011) Berth and quay crane allocation: a moldable task scheduling model. J Oper Res Soc 62:1189–1197

    Google Scholar 

  • Boysen N, Emde S, Fliedner M (2012) Determining crane areas for balancing workload among interfering and noninterfering cranes. Nav Res Logist 59:656–662

    MathSciNet  Google Scholar 

  • Buhrkal K, Zuglian S, Ropke S, Larsen J, Lusby R (2011) Models for the discrete berth allocation problem: a computational comparison. Transp Res Part E 47:461–473

    Google Scholar 

  • Chang D, Yan W, Chen C-H, Jiang Z (2008) A berth allocation strategy using heuristics algorithm and simulation optimisation. Int J Comput Appl Technol 32(4):272–281

    Google Scholar 

  • Chang D, Jiang Z, Yan W, He J (2010) Integrating berth allocation and quay crane assignments. Transp Res Part E 46:975–990

    Google Scholar 

  • Chao S-L, Lin Y-J (2011) Evaluating advanced quay cranes in container terminals. Transp Res Part E 47:432–445

    Google Scholar 

  • Chen L, Bostel N, Dejax P, Cai J, Xi L (2007) A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal. Eur J Oper Res 181(1):40–58

    MATH  MathSciNet  Google Scholar 

  • Chen JH, Lee DH, Cao JX (2012) A combinatorial benders’ cuts algorithm for the quayside operation problem at container terminals. Transp Res Part E Logist Transp Rev 48(1):266–275

    Google Scholar 

  • Cheong CY, Tan KC, Liu DK, Lin CJ (2010) Multi-objective and prioritized berth allocation in container ports. Ann Oper Res 180:63–103

    MATH  MathSciNet  Google Scholar 

  • Christensen CG, Holst CT, (2008) Berth allocation in container terminals Master’s Thesis Department of Informatics and Mathematical Modelling Technical University of Denmark (in Danish)

  • Chung SH, Choy KL (2012) A modified genetic algorithm for quay crane scheduling operations. Expert Syst Appl 39(4):4213–4221

    Google Scholar 

  • Cordeau JF, Laporte G, Legato P, Moccia L (2005) Models and tabu search heuristics for the berth-allocation problem. Transp Sci 39(4):526–538

    Google Scholar 

  • De Oliveira RM, Mauri GR, Lorena LAN (2012) Clustering search for the berth allocation problem. Expert Syst Appl 39(5):5499–5505

    Google Scholar 

  • Ganji SRS, Babazadeh A, Arabshahi N (2010) Analysis of the continuous berth allocation problem in container ports using a genetic algorithm. J Mar Sci Technol 15:408–416

    Google Scholar 

  • Giallombardo G, Moccia L, Salani M, Vacca I (2010) Modeling and solving the tactical berth allocation problem. Transp Res Part B 44(2):232–245

    Google Scholar 

  • Golias MM (2011) A bi-objective berth allocation formulation to account for vessel handling time uncertainty. Marit Econ Logist 13(4):419–441

    Google Scholar 

  • Golias MM, Boile M, Theofanis S (2009a) Berth scheduling by customer service differentiation: a multi-objective approach. Transp Res Part E 45:878–892

    Google Scholar 

  • Golias MM, Saharidis GK, Boile M (2009b) The berth allocation problem: optimizing vessel arrival time. Marit Econ Logist 11(4):358–377

    Google Scholar 

  • Golias MM, Boile M, Theofanis S (2010) A lamda-optimal based heuristic for the berth scheduling problem. Transp Res Part C 18:794–806

    Google Scholar 

  • Goodchild AV, Daganzo CF (2006) Double-cycling strategies for container ships and their effect on ship loading and unloading operations. Transp Sci 40(4):473–483

    Google Scholar 

  • Guan Y, Cheung RK (2004) The berth allocation problem: models and solution methods. OR Spectrum 26(1):75–92

    Article  MATH  MathSciNet  Google Scholar 

  • Guan Y, Yang K-h (2010) Analysis of berth allocation and inspection operations in a container terminal. Marit Econ Logist 12(4):347–369

    Google Scholar 

  • Hakam MH, Solvang WD, Hammervoll T (2012) A genetic algorithm approach for quay crane scheduling with non-interference constraints at Narvik container terminal. Int J Logist Res Appl 15(4):269–281

    Google Scholar 

  • Han X-l, Lu Z-q, Xi L-f (2010) A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Eur J Oper Res 207:1327–1340

    MATH  Google Scholar 

  • Hansen P, Oguz C, Mladenovic N (2008) Variable neighborhood search for minimum cost berth allocation. Eur J Oper Res 191:636–649

    MATH  Google Scholar 

  • Hendriks M, Laumanns M, Lefeber E, Udding JT (2010) Robust cyclic berth planning of container vessels. OR Spectrum 32(3):501–518

    Article  MATH  Google Scholar 

  • Hendriks MPM, Armbruster D, Laumanns M, Lefeber E, Udding JT (2012) Strategic allocation of cyclically calling vessels for multi-terminal container operators. Flex Serv Manuf J 24(3):248–273

    Google Scholar 

  • Imai A, Nishimura E, Papadimitriou S (2001) The dynamic berth allocation problem for a container port. Transp Res Part B 35:401–417

    Google Scholar 

  • Imai A, Nishimura E, Papadimitriou S (2005) Berth allocation in a container port: using a continuous location space approach. Transp Res Part B 39:199–221

    Google Scholar 

  • Imai A, Nishimura E, Hattori M, Papadimitriou S (2007a) Berth allocation at indented berths for mega-containerships. Eur J Oper Res 179:579–593

    MATH  Google Scholar 

  • Imai A, Zhang J-T, Nishimura E, Papadimitriou S (2007b) The berth allocation problem with service time and delay time objectives. Marit Econ Logist 9:269–290

    Google Scholar 

  • Imai A, Chen HC, Nishimura E, Papadimitriou S (2008a) The simultaneous berth and quay crane allocation problem. Transp Res Part E 44:900–920

    Google Scholar 

  • Imai A, Nishimura E, Papadimitriou S (2008b) Berthing ships at a multi-user container terminal with a limited quay capacity. Transp Res Part E 44:136–151

    Google Scholar 

  • Kaveshgar N, Huynh N, Rahimian SK (2012) An efficient genetic algorithm for solving the quay crane scheduling problem. Expert Syst Appl 39(18):13108–13117

    Google Scholar 

  • Kim J, Morrison JR (2012) Offshore port service concepts: classification and economic feasibility. Flex Serv Manuf J 24(3):214–245

    Google Scholar 

  • Kim KH, Park YM (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156:752–768

    MATH  Google Scholar 

  • Lang N, Veenstra A (2009) A quantitative analysis of container vessel arrival planning strategies. OR Spectrum 32(3):477–499

    Article  Google Scholar 

  • Lee Y, Chen C-Y (2009) An optimization heuristic for the berth scheduling problem. Eur J Oper Res 196:500–508

    MathSciNet  Google Scholar 

  • Lee D-H, Chen JH (2010) An improved approach for quay crane scheduling with non-crossing constraints. Eng Optim 42(1):1–15

    Google Scholar 

  • Lee D-H, Wang HQ (2010a) Integrated discrete berth allocation and quay crane scheduling in port container terminals. Eng Optim 42(8):747–761

    MathSciNet  Google Scholar 

  • Lee D-H, Wang HQ (2010b) An approximation algorithm for quay crane scheduling with handling priority in port container terminals. Eng Optim 42(12):1151–1161

    MathSciNet  Google Scholar 

  • Lee D-H, Wang HQ, Miao L (2008a) Quay crane scheduling with handling priorities in port container terminals. Eng Optim 40(2):179–189

    Google Scholar 

  • Lee DH, Wang HQ, Miao L (2008b) Quay crane scheduling with non-interference constraints in port container terminals. Transp Res Part E 44:124–135

    Google Scholar 

  • Lee DH, Cao Z, Chen JH, Cao JX (2009) Simultaneous load scheduling of quay crane and yard crane in port container terminals. Transp Res Rec 2097:62–69

  • Lee DH, Chen JH, Cao JX (2010) The continuous berth allocation problem: a greedy randomized adaptive search solution. Transp Res Part E 46:1017–1029

    Google Scholar 

  • Legato P, Mazza RM, Trunfio R (2010) Simulation-based optimization for discharge/loading operations at a maritime container terminal. OR Spectrum 32:543–567

    Article  MATH  Google Scholar 

  • Legato P, Trunfio R, Meisel F (2012) Modeling and solving rich quay crane scheduling problems. Comput Oper Res 39(9):2063–2078

    MATH  MathSciNet  Google Scholar 

  • Liang C, Huang Y, Yang Y (2009) A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning. Comput Ind Eng 56:1021–1028

    Google Scholar 

  • Liang C, Guo J, Yang Y (2011) Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning. J Intell Manuf 22:471–479

    Google Scholar 

  • Lim A, Rodrigues B, Xiao F, Zhu Y (2004) Crane scheduling with spatial constraints. Nav Res Logist 51:386–406

    MATH  MathSciNet  Google Scholar 

  • Lim A, Rodrigues B, Xu Z (2007) A m-parallel crane scheduling problem with a non-crossing constraint. Nav Res Logist 54(2):115–127

    MATH  MathSciNet  Google Scholar 

  • Liu J, Wan YW, Wang L (2006) Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Nav Res Logist 53(1):60–74

    MATH  MathSciNet  Google Scholar 

  • Lokuge P, Alahakoon D (2007) Improving the adaptability in automated vessel scheduling in container ports using intelligent software agents. Eur J Oper Res 177:1985–2015

    MATH  Google Scholar 

  • Lu Z, Han X, Xi L, Erera AL (2012) A heuristic for the quay crane scheduling problem based on contiguous bay crane operations. Comput Oper Res 39(12):2915–2928

    MathSciNet  Google Scholar 

  • Meisel F (2011) The quay crane scheduling problem with time windows. Nav Res Logist 58:619–636

    MATH  MathSciNet  Google Scholar 

  • Meisel F, Bierwirth C (2009) Heuristics for the integration of crane productivity in the berth allocation problem. Transp Res Part E 45:196–209

    Google Scholar 

  • Meisel F, Bierwirth C (2011) A unified approach for the evaluation of quay crane scheduling models and algorithms. Comput Oper Res 38:683–693

    Google Scholar 

  • Meisel F, Wichmann M (2010) Container sequencing for quay cranes with internal reshuffles. OR Spectrum 32(3):569–592

    Article  MATH  Google Scholar 

  • Moccia L, Cordeau JF, Gaudioso M, Laporte G (2006) A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Nav Res Logist 53:45–59

    MATH  MathSciNet  Google Scholar 

  • Monaco MF, Sammarra M (2007) The berth allocation problem: a strong formulation solved by a lagrangean approach. Transp Sci 41(2):265–280

    Google Scholar 

  • Moorthy R, Teo CP (2006) Berth management in container terminal: the template design problem. OR Spectrum 28:495–518

    Article  MATH  Google Scholar 

  • Nam H, Lee T (2012) A scheduling problem for a novel container transport system: a case of mobile harbor operation schedule. Flex Serv Manuf J 24(4) (in press), available at http://www.springerlink.com/content/1936-6590. doi:10.1007/s10696-012-9135-6

  • Ng WC, Mak KL (2006) Quay crane scheduling in container terminals. Eng Optim 38(6):723–737

    Google Scholar 

  • Pielage BA, Rijsenbrij JC, Van de Bosch W, Ligteringen H, Van Beemen J (2008) Floating cranes for container handling Port Research Centre Rotterdam-Delft The Netherlands ISBN/EAN: 978-90-5638-189-9 Available online: https://edit.portofrotterdam.com/nl/Over-de-haven/onderwijs-werk/Port-research-centre/Documents/Floating-Cranes-for-Container-Handling.pdf. last Accessed 1 April 2012

  • Saharidis GKD, Golias MM, Boile M, Theofanis S, Ierapetritou MG (2010) The berth scheduling problem with customer differentiation: a new methodological approach based on hierarchical optimization. Int J Adv Manuf Technol 46:377–393

    Google Scholar 

  • Salido MA, Rodriguez-Molins M, Barber F (2011) Integrated intelligent techniques for remarshaling and berthing in maritime terminals. Adv Eng Inform 25:435–451

    Google Scholar 

  • Sammarra M, Cordeau JF, Laporte G, Monaco MF (2007) A tabu search heuristic for the quay crane scheduling problem. J Sched 10:327–336

    MATH  Google Scholar 

  • Shin K, Lee T (2012) Container loading and unloading scheduling for a mobile harbor system: a global and local search method. Flex Serv Manuf J 24(4) (in press), available at http://www.springerlink.com/content/1936-6590. doi:10.1007/s10696-012-9134-7

  • Song L, Cherrett T, Guan W (2012) Study on berth planning problem in a container seaport: using an integrated programming approach. Comput Ind Eng 62(1):119–128

    Google Scholar 

  • Stahlbock R, Voß S (2008) Operations research at container terminals: a literature update. OR Spectrum 30:1–52

    Article  MATH  Google Scholar 

  • Steenken D, Voß S, Stahlbock R (2004) Container terminal operation and operations research—a classification and literature review. OR Spectrum 26:3–49

    MATH  Google Scholar 

  • Tavakkoli-Moghaddam R, Makui A, Salahi S, Bazzazi M, Taheri F (2009) An efficient algorithm for solving a new mathematical model for a quay crane scheduling problem in container ports. Comput Ind Eng 56:241–248

    Google Scholar 

  • Theofanis S, Boile M, Golias MM (2009) Container terminal berth planning: critical review of research approaches and practical challenges. Transp Res Rec 22–28

  • UNCTAD (United Nations Conference on Trade and Development) secretariat 2011 Review of Maritime Transport 2011 United Nations publication http://www.unctad.org/en/docs/rmt2011_enpdf. Accessed 26 Jan 2012

  • Vis IFA, De Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147:1–16

    MATH  Google Scholar 

  • Vis IFA, Van Anholt RG (2010) Performance analysis of berth configurations at container terminals. OR Spectrum 32(3):453–476

    Article  Google Scholar 

  • Wang Y, Kim KH (2011) A quay crane scheduling algorithm considering the workload of yard cranes in a container yard. J Intell Manuf 22:459–470

    Google Scholar 

  • Wang F, Lim A (2007) A stochastic beam search for the berth allocation problem. Decis Support Syst 42:2186–2196

    Google Scholar 

  • Xu D, Li CL, Leung JYT (2012a) Berth allocation with time-dependent physical limitations on vessels. Eur J Oper Res 216(1):47–56

    MATH  MathSciNet  Google Scholar 

  • Xu Y, Chen Q, Quan X (2012b) Robust berth scheduling with uncertain vessel delay and handling time. Ann Oper Res 192(1):123–140

    MATH  MathSciNet  Google Scholar 

  • Zhang HP, Kim KH (2009) Maximizing the number of dual-cycle operations of quay cranes in container terminals. Comput Ind Eng 56:979–992

    Google Scholar 

  • Zhang L, Khammuang K, Wirth A (2008) On-line scheduling with non-crossing constraints. Oper Res Lett 36:579–583

    MATH  MathSciNet  Google Scholar 

  • Zhang C, Zheng L, Zhang Z, Shi L, Armstrong AJ (2010) The allocation of berths and quay cranes by using a sub-gradient optimization technique. Comput Ind Eng 58:40–50

    Google Scholar 

  • Zhen L, Chew EP, Lee LH (2011a) An integrated model for berth template and yard template planning in transshipment hubs. Transp Sci 45(4):483–504

    Google Scholar 

  • Zhen L, Lee LH, Chew EP (2011b) A decision model for berth allocation under uncertainty. Eur J Oper Res 212:54–68

    Google Scholar 

  • Zhou PF, Kang HG (2008) Study on berth and quay-crane allocation under stochastic environments in container terminals. Sys Eng Theory Pract 28(1):161–169

    Google Scholar 

  • Zhu Y, Lim A (2006) Crane scheduling with non-crossing constraint. J Oper Res Soc 57:1464–1471

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Groningen Seaports for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor J. Carlo.

Appendices

Appendix 1

See Table 7.

Table 7 The classification of all BAPs published in scientific journals between 2004 and 2012

Appendix 2

See Table 8.

Table 8 The classification of all QCSPs published in scientific journals between 2004 and 2012

Appendix 3

See Table 9.

Table 9 The classification of the journal papers from 2004 to 2012 that propose solution methodologies that integrate the seaside decisions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlo, H.J., Vis, I.F.A. & Roodbergen, K.J. Seaside operations in container terminals: literature overview, trends, and research directions. Flex Serv Manuf J 27, 224–262 (2015). https://doi.org/10.1007/s10696-013-9178-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-013-9178-3

Keywords

Navigation