Skip to main content
Log in

Real-time container storage location assignment at an RTG-based seaport container transshipment terminal: problem description, control system, simulation model, and penalty scheme experimentation

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

We show how the overall productivity of an RTG-based seaport container terminal depends on the system used for automatically selecting storage locations for export containers in real time as they enter the terminal. Several real-time container storage systems are proposed and evaluated by a fully-integrated, discrete event simulation model of a vessel-to-vessel transshipment terminal. In this study, we introduce the problem; present a system for making real-time container storage decisions; describe the simulation model used for experimentation; and describe an experiment that illustrates some of the main trade-offs involved in container storage decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambrosino D, Sciomachen A (2003) Impact of yard organisation on the master bay planning problem. Marit Econ Logist 5(3):285–300

    Article  Google Scholar 

  • APM Terminals Interim Report 1st Quarter 2013. http://www.apmterminals.com/uploadedFiles/corporate/Media_Center/Press_Releases/130517%20APM%20Terminals%20Q1%202013%20Report.pdf. Accessed on 31 July 2013

  • Bazzazi M, Safaei N, Javadian N (2009) A genetic algorithm to solve the storage space allocation problem in a container terminal. Comput Ind Eng 56(1):44–52

    Article  Google Scholar 

  • Borgman B, van Asperen E, Dekker R (2010) Online rules for container stacking. OR Spectrum 32:687–716

    Article  MATH  Google Scholar 

  • Briskorn D, Drexl A, Hartmann S (2006) Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum 28(4):611–630

    Article  MATH  Google Scholar 

  • Bruzzone A, Signorile R (1998) Simulation and genetic algorithms for ship planning and shipyard layout. Simulation 71(2):74–83

    Article  Google Scholar 

  • Cargotec powerpoint presentation. http://www.cargotec.com/en-global/investors/Documents/2011%20investors/CMD%202011/SP_CMD2011_FINAL.pdf. Accessed on 31 July 2013

  • Chen P, Fu Z, Lim A, Rodrigues B (2004) Port yard storage optimization. IEEE Trans Autom Sci Eng 1:26–37

    Article  Google Scholar 

  • Cordeau J-F, Gaudioso M, Laporte G, Moccia L (2007) The service allocation problem at the Gioia Tauro maritime terminal. Eur J Oper Res 176(2):1167–1184

    Article  MATH  Google Scholar 

  • Davidson N (2012) Global container terminal operators forecast: 2012. Port Technol Int 52:7–9

    Google Scholar 

  • Dekker R, Voogd P, van Asperen E (2006) Advanced methods for container stacking. OR Spectrum 28(4):563–586

    Article  MATH  Google Scholar 

  • Dragovic B, Park NK, Radmilovic Z, Maras V (2005) Simulation modelling of ship-berth link with priority service. Marit Econ Logist 7(4):316–335

    Article  Google Scholar 

  • Fu Z, Li Y, Lim A, Rodrigues B (2007) Port space allocation with a time dimension. J Oper Res Soc 58:797–807

    Article  MATH  Google Scholar 

  • Goetschalckx M, Ratliff HD (1990) Shared storage policies based on the duration stay of unit loads. Manag Sci 36:1120–1132

    Article  Google Scholar 

  • Grunow M, Günther H-O, Lehmann M (2006) Strategies for dispatching AGVs at automated seaport container terminals. OR Spectrum 28(4):587–610

    Article  MATH  Google Scholar 

  • Günther H-O, Kim K-H (2006) Container terminals and terminal operations. OR Spectrum 28(4):437–445

    Article  Google Scholar 

  • Han Y, Lee LH, Chew EP, Tan KC (2008) A yard storage strategy for minimizing traffic congestion in a marine container transshipment hub. OR Spectrum 30(4):697–720

    Article  MATH  MathSciNet  Google Scholar 

  • Kim KH, Park KT (2003) A note on a dynamic space-allocation method for outbound containers. Eur J Oper Res 148(1):92–101

    Article  MATH  Google Scholar 

  • Kim KH, Park YM, Ryu K-R (2000) Deriving decision rules to locate export containers in container yards. Eur J Oper Res 124(1):89–101

    Article  MATH  Google Scholar 

  • Kozan E, Preston P (2006) Mathematical modelling of container transfers and storage locations at seaport terminals. OR Spectrum 28(4):519–537

    Article  MATH  Google Scholar 

  • Ku LP, Chew EP, Lee LH, Tan KC (2012) A novel approach to yard planning under vessel arrival uncertainty. Flex Serv Manuf J 24:274–293

    Article  Google Scholar 

  • Ku LP, Lee LH, Chew EP, Tan KC (2010) An optimization framework for yard planning in a container terminal: case with automated rail-mounted gantry cranes. OR Spectrum 32:519–541

    Article  MATH  Google Scholar 

  • Kulak O, Polat O, Gujjula R, Günther H-O (2012) Strategies for improving a long-established terminal’s performance: a simulation study of a Turkish container terminal. Flex Serv Manuf J. doi:10.1007/s10696-011-9128-x

    Google Scholar 

  • Lee DH, Cao JX, Shi Q, Chen JH (2009) A heuristic algorithm for yard truck scheduling and storage allocation problems. Transp Res Part E Logist Transp Rev 45(5):810–820

    Article  Google Scholar 

  • Lee LH, Chew EP, Tan KC, Han Y (2006) An optimization model for storage yard management in transshipment hubs. OR Spectrum 28(4):539–561

    Article  MATH  MathSciNet  Google Scholar 

  • Legato P, Canonaco P, Mazza RM (2009) Yard crane management by simulation and optimisation. Marit Econ Logist 11(1):36–57

    Article  Google Scholar 

  • Lim A, Xu Z (2006) A critical-shaking neighborhood search for the yard allocation problem. Eur J Oper Res 174(2):1247–1259

    Article  MATH  Google Scholar 

  • Liu CI, Jula H, Vukadinovic K, Ioannou P (2004) Automated guided vehicle system for two container yard layouts. Transp Res Part C Emerg Technol 12(5):349–368

    Article  Google Scholar 

  • Maersk Annual Report 2010, page 16. http://files.shareholder.com/downloads/ABEA-3GG91Y/2612085966x0x443362/32c63cdb-2fd7-4a83-a352-10a78175a27c/100154_AR2010_UK.pdf. Accessed 31 July 2013

  • Monaco MF, Moccia L, Sammarra M (2009) Operations research for the management of a transhipment container terminal: the Gioia Tauro case. Marit Econ Logist 11(1):7–35

    Article  Google Scholar 

  • Murty KG, Liu J, Wan YW, Linn R (2005a) A decision support system for operations in a container terminal. Decis Support Syst 39(3):309–332

    Article  Google Scholar 

  • Murty KG, Wan YW, Liu J, Tseng MM, Leung E, Lai KK, Chiu HWC (2005b) Hongkong International Terminals gains elastic capacity using a data-intensive decision-support system. Interfaces 35(1):61–75

    Article  Google Scholar 

  • Navis Expert Decking brochure. http://www.navis.com/sites/default/files/pages/docs/ds_expert_decking_2.pdf. Accessed 31 July 2013

  • Nishimura E, Imai A, Janssens GK, Papadimitriou S (2009) Container storage and transshipment marine terminals. Transp Res Part E Logist Transp Rev 45(5):771–786

    Article  Google Scholar 

  • Petering MEH (2007) Design, analysis, and real-time control of seaport container transshipment terminals. PhD dissertation, University of Michigan

  • Petering MEH (2009) Effect of block width and storage yard layout on marine container terminal performance. Transp Res Part E Logist Transp Rev 45(4):591–610

    Article  Google Scholar 

  • Petering MEH (2010) Development and simulation analysis of real-time, dual-load yard truck control systems for seaport container transshipment terminals. OR Spectrum 32:633–661

    Article  MATH  Google Scholar 

  • Petering MEH (2011) Decision support for yard capacity, fleet composition, truck substitutability, and scalability issues at seaport container terminals. Transp Res Part E Logist Transp Rev 47(1):85–103

    Article  Google Scholar 

  • Petering MEH, Murty KG (2009) Effect of block length and yard crane deployment systems on overall performance at a seaport container transshipment terminal. Comput Oper Res 36(5):1711–1725

    Article  MATH  Google Scholar 

  • Petering MEH, Wu Y, Li W, Goh M, de Souza R (2009) Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum 31(4):801–835

    Article  MATH  Google Scholar 

  • Preston P, Kozan E (2001) An approach to determine storage locations of containers at seaport terminals. Comput Oper Res 28(10):983–995

    Article  MATH  Google Scholar 

  • Saanen YA (2004) An approach for designing robotized marine container terminals. PhD dissertation, Technical University Delft, Delft, Netherlands

  • Saanen YA, Dekker R (2006a) Intelligent stacking as way out of congested yards? Part 1. Port Technol Int 31:87–92

    Google Scholar 

  • Saanen YA, Dekker R (2006b) Intelligent stacking as way out of congested yards? Part 2. Port Technol Int 32:80–86

    Google Scholar 

  • Stahlbock R, Voß S (2008) Operations research at container terminals: a literature update. OR Spectrum 30(1):1–52

    Article  MATH  Google Scholar 

  • Steenken D, Voß S, Stahlbock R (2004) Container terminal operation and operations research—a classification and literature review. OR Spectrum 26(1):3–49

    Article  MATH  Google Scholar 

  • van Asperen E, Borgman B, Dekker R (2012) Evaluating impact of truck announcements on container stacking efficiency. Flex Serv Manuf J. doi:10.1007/s10696-011-9108-1

    Google Scholar 

  • Vis IFA (2006) A comparative analysis of storage and retrieval equipment at a container terminal. Int J Prod Econ 103(2):680–693

    Article  Google Scholar 

  • Vis IFA, de Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147(1):1–16

    Article  MATH  Google Scholar 

  • Wikipedia article “List of world’s busiest transshipment ports”. https://en.wikipedia.org/wiki/List_of_world%27s_busiest_transshipment_ports. Accessed 31 July 2013

  • World Shipping Council website. http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports. Accessed 31 July 2013

  • Zhang C, Liu J, Wan YW, Murty KG, Linn RJ (2003) Storage space allocation in container terminals. Transp Res Part B Methodol 37(10):883–903

    Article  Google Scholar 

  • Zhen L, Chew EP, Lee LH (2011) An integrated model for berth template and yard template planning in transshipment hubs. Transp Sci 45(4):483–504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. H. Petering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petering, M.E.H. Real-time container storage location assignment at an RTG-based seaport container transshipment terminal: problem description, control system, simulation model, and penalty scheme experimentation. Flex Serv Manuf J 27, 351–381 (2015). https://doi.org/10.1007/s10696-013-9183-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-013-9183-6

Keywords

Navigation