Skip to main content
Log in

Tunneling Times with Covariant Measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider the time delay of massive, non-relativistic, one-dimensional particles due to a tunneling potential. In this setting the well-known Hartman effect asserts that often the sub-ensemble of particles going through the tunnel seems to cross the tunnel region instantaneously. An obstacle to the utilization of this effect for getting faster signals is the exponential damping by the tunnel, so there seems to be a trade-off between speedup and intensity. In this paper we prove that this trade-off is never in favor of faster signals: the probability for a signal to reach its destination before some deadline is always reduced by the tunnel, for arbitrary incoming states, arbitrary positive and compactly supported tunnel potentials, and arbitrary detectors. More specifically, we show this for several different ways to define “the same incoming state” and “the same detector” when comparing the settings with and without tunnel potential. The arrival time measurements are expressed in the time-covariant approach, but we also allow the detection to be a localization measurement at a later time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operator in Hilbert Space, vol. I. Dover, New York (1993)

    Google Scholar 

  2. Ali, S.T.: Stochastic localization, quantum mechanics on phase space and quantum space time. Riv. Nuovo Cim. 8, 1–128 (1985)

    Article  Google Scholar 

  3. Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  4. Büttiker, M., Landauer, R.: Traversal time for tunneling. Phys. Rev. Lett. 49, 1742–1739 (1982)

    Article  Google Scholar 

  5. Carmeli, C., Heinonen, T., Toigo, A.: Position and momentum observables on ℝ and on ℝ3. J. Math. Phys. 45, 2526–2539 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Chiao, R.Y., Steinberg, A.M.: Prog. Opt. 37, 345 (1997)

    Article  Google Scholar 

  7. Christ, M., Kiselev, A.: WKB asymptotics of generalized eigenfunctions of one-dimensional Schrödinger operators. J. Funct. Anal. 179, 426–447 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christ, M., Kiselev, A.: WKB and spectral analysis of one-dimensional Schrödinger operators with slowly varying potentials. Commun. Math. Phys. 218, 245–262 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  10. Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. XXXII, 121–251 (1979)

    Article  MathSciNet  Google Scholar 

  11. Deift, P., Killip, R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203, 341–347 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dollard, J.D.: Scattering into cones I: potential scattering. Commun. Math. Phys. 12, 193–203 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, San Diego (1972)

    MATH  Google Scholar 

  14. Enders, A., Nimtz, G.: On superluminal barrier traversal. J. Phys. I France 2, 1698–1693 (1992)

    Article  Google Scholar 

  15. Hartman, T.E.: Tunneling of a wave packet. J. Appl. Phys. 33, 3433–3427 (1962)

    Article  ADS  Google Scholar 

  16. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  17. Holevo, A.S.: Generalized imprimitivity systems for Abelian groups. Russ. Math. 27, 49–71 (1983)

    Google Scholar 

  18. Kijowski, J.: On the time operator in quantum mechanics and the Heisenberg uncertainty relation for energy and time. Rep. Math. Phys. 6, 361–386 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ludwig, G.: Foundations of Quantum Mechanics, vol. I. Springer, Berlin (1983)

    MATH  Google Scholar 

  20. Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.): Time in Quantum Mechanics, 2nd edn. Lecture Notes in Physics, vol. 734. Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Nimtz, G., Heitmann, W.: Superluminal photonic tunneling and quantum electronics. Prog. Quantum Electron. 21, 81–108 (1997)

    Article  ADS  Google Scholar 

  22. Pauli, W.: General Principles of Quantum Theory. Springer, Berlin (1980)

    Google Scholar 

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Academic Press, San Diego (1975)

    MATH  Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Academic Press, San Diego (1979)

    MATH  Google Scholar 

  25. Steinberg, A.M., Kwiat, P.G., Chiao, R.Y.: Measurement of a single photon tunneling time. Phys. Rev. Lett. 71, 708–711 (1993)

    Article  ADS  Google Scholar 

  26. Titchmarsh, E.C.: Eigenfunction Expansions, 2nd edn. Oxford University Press, Oxford (1962)

    MATH  Google Scholar 

  27. Werner, R.: Screen observables in relativistic and nonrelativistic quantum mechanics. J. Math. Phys. 27, 793–803 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kiukas.

Additional information

Dedicated to Pekka Lahti on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiukas, J., Ruschhaupt, A. & Werner, R.F. Tunneling Times with Covariant Measurements. Found Phys 39, 829–846 (2009). https://doi.org/10.1007/s10701-009-9275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9275-z

Keywords

Navigation