Skip to main content
Log in

Biological Structures Mitigate Catastrophic Fracture Through Various Strategies

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Gao et al. (PNAS, 100, 5597–5600 (2003)) have argued that load-bearing mineralized hard tissues, including bones, shells, and teeth, are nanocomposites, in which the mineral phase has nanoscale dimensions that ensure optimum strength and flaw tolerance. In particular, it has been claimed that the thickness of these brittle building blocks, being smaller than a critical size, h *, of the order of tens of nanometers, renders them insensitive to the presence of crack-like flaws and enables them to achieve near-theoretical strength, which is why Nature employs nanoscale features in mineralized biological composites. We find this point of view, which Gao et al. and others have quoted in subsequent publications and presentations, unpersuasive and present several counterexamples which show that biological structures, as a result of being comprised of relatively fragile constituents that fracture at stress levels several orders of magnitude smaller than the theoretical strength, adopt various strategies to develop mechanical responses that enable them to mitigate catastrophic failure. Nanoscale structural features are not a result of an innate resistance to very high stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Gao B. Ji I.L. Jager E. Arzt P. Fratzl (2003) PNAS 100 5597–5600 Occurrence Handle2003PNAS..100.5597G

    ADS  Google Scholar 

  • A.A. Griffith (1921) Phil. Trans. Roy. Soc. A 221 163–197 Occurrence Handle1921RSPTA.221..163G Occurrence Handle10.1098/rsta.1921.0006

    Article  ADS  Google Scholar 

  • D.S. Dugdale (1962) Journal of the Mechanics and Physics of Solids 8 100–104 Occurrence Handle1960JMPSo...8..100D

    ADS  Google Scholar 

  • Barenblatt, G.I. (1962). In: Advances in Applied Mechanics, Vol. VII, pp. 55–129.

  • Jones, J.E. (1924). Proc. Roy. Soc. of London 106A, 441–462; (1924). Proc. Roy. Soc. of London 106A, 463–477.

  • S.L. Mielke D. Troya S. Zhang J.L. Li S. Xiao R. Car R.S. Ruoff G.C. Schatz T. Belytschko (2004) Chemical Physics Letters 390 IssueID4–6 413–420 Occurrence Handle2004CPL...390..413M

    ADS  Google Scholar 

  • Belytschko, T., Xiao, S.P., Schatz, G.C. and Ruoff, R.S. (2002). Phys. Rev. B 65, Article 235430.

  • C. Hellmich F.-J. Ulm (2002) Journal of Biomechanics 35 IssueID9 1199–1212 Occurrence Handle10.1016/S0021-9290(02)00080-5

    Article  Google Scholar 

  • C. Hellmich J.-F. Barthelemy L. Dormieux (2004) European Journal of Mechanics 23 783–810 Occurrence Handle1058.74584 Occurrence Handle2004EJMS...23..783H

    MATH  ADS  Google Scholar 

  • H. Kessler R. Ballarini R.L. Mullen L.T. Kuhn A.H. Heuer (1996) Computational Materials Science 5 157–166 Occurrence Handle10.1016/0927-0256(95)00067-4

    Article  Google Scholar 

  • S. Kamat X. Su R. Ballarini A.H. Heuer (2000) Nature 405 1036–1040 Occurrence Handle2000Natur.405.1036K

    ADS  Google Scholar 

  • S. Kamat H. Kessler R. Ballarini M. Nassirou A.H. Heuer (2004) Acta Materialia 52 2395–2406 Occurrence Handle10.1016/j.actamat.2004.01.030

    Article  Google Scholar 

  • J.R. Rice (1968) Journal of Applied Mechanics 35 379–386

    Google Scholar 

  • Aveston J., Cooper, G.A. and Kelly, A. (1971). Conf. Proc. 15, National Physical Laboratory, IPC Science and Technology Press.

  • J.D. Currey (2002) Bones: Structure and Mechanics Princeton University Press Princeton

    Google Scholar 

  • F.J. O’Brien D. Taylor T.C. Lee (2005) J. Orthopaedic Research 23 475–480

    Google Scholar 

  • O. Akkus C.M. Rimnac (2001) Journal of Orthopaedic Research 19 927–934 Occurrence Handle10.1016/S0736-0266(01)00004-3

    Article  Google Scholar 

  • M.B. Schaffler K.J. Jepsen (2000) International Journal of Fatigue 22 IssueID10 839–846 Occurrence Handle10.1016/S0142-1123(00)00053-0

    Article  Google Scholar 

  • D.B. Burr R.B. Martin M.B. Schaffler E.L. Radin (1985) Journal of Biomechanics 18 IssueID3 189

    Google Scholar 

  • Silva, E.C. and Ulm, F.-J. (2002). In: (edited by Karihaloo, B. L) Proceedings of IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials, Kluwer Acad. Pub., London, pp. 355–366.

  • B.N. Cox D.B. Marshall (1994) Acta Metall Mater 42 341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ballarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballarini, R., Kayacan, R., Ulm, FJ. et al. Biological Structures Mitigate Catastrophic Fracture Through Various Strategies. Int J Fract 135, 187–197 (2005). https://doi.org/10.1007/s10704-005-3949-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-005-3949-0

Keywords

Navigation