Skip to main content
Log in

Dynamic quantized fracture mechanics

  • Original Article
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new quantum action-based theory, dynamic quantized fracture mechanics (DQFM), is presented that modifies continuum-based dynamic fracture mechanics (DFM). The crack propagation is assumed as quantized in both space and time. The static limit case corresponds to quantized fracture mechanics (QFM), that we have recently developed to predict the strength of nanostructures. DQFM predicts the well-known forbidden strength and crack speed bands – observed in atomistic simulations – which are unexplained by continuum-based approaches. In contrast to DFM and linear elastic fracture mechanics (LEFM), that are shown to be limiting cases of DQFM and which can treat only large (with respect to the “fracture quantum”) and sharp cracks under moderate loading speed, DQFM has no restrictions on treating defect size and shape, or loading rate. Simple examples are discussed (i) strengths predicted by DQFM for static loads are compared with experimental and numerical results on carbon nanotubes containing nanoscale defects; (ii) the dynamic fracture initiation toughness predicted by DQFM is compared with experimental results on microsecond range impact failures of 2024-T3 aircraft aluminum alloy. Since LEFM has been successfully applied also at the geophysics size-scale, it is conceivable that DQFM theory can treat objects that span at least 15 orders of magnitude in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • T Belytschko (2004) ArticleTitleThe role of vacancy defects and holes in the fracture of carbon nanotubes Chem Phys Lett 390 413–420 Occurrence Handle10.1016/j.cplett.2004.04.054

    Article  Google Scholar 

  • Belytschko T, Xiao SP, Ruoff R, (2002) Effects of defects on strength of nanotubes: comparison. Los Alamos National Laboratory, Preprint Archive, Physics pp 1–6

  • A Carpinteri N Pugno (2005) ArticleTitleAre the scaling laws on strength of solids related to mechanics or to geometry? Nat Mat 4 421–423 Occurrence Handle10.1038/nmat1408

    Article  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press

  • H Gao B Ji IL Jaeger E Arzt P Fratzl (2003) ArticleTitleMaterials become insensitive to flaws at nanoscale: lesson from nature Proce Natl Acad Sci USA 100 5597–5600 Occurrence Handle10.1073/pnas.0631609100 Occurrence Handle2003PNAS..100.5597G

    Article  ADS  Google Scholar 

  • AA Griffith (1920) ArticleTitleThe phenomenon of rupture and flow in solids Phil Trans Roy Soc A 221 163–198 Occurrence Handle1921RSPTA.221..163G

    ADS  Google Scholar 

  • SI Heizler DA Kessler (2002) ArticleTitleMode-I fracture in a nonlinear lattice with viscoelastic forces Phys Rev E 66 016126–1/10 Occurrence Handle10.1103/PhysRevE.66.016126 Occurrence Handle2002PhRvE..66a6126H

    Article  ADS  Google Scholar 

  • Hellan K (1985) An Introduction to fracture mechanics. McGraw-Hill Book Company

  • Y Hirai et al. (2003) ArticleTitleMolecular dynamics studies on mechanical properties of carbon nano tubes with pinhole defects Jpn J Appl Phys 42 4120–4123 Occurrence Handle10.1143/JJAP.42.4120

    Article  Google Scholar 

  • D Holland M Marder (1999) ArticleTitleCracks and atoms Adv Mat 11 793–806 Occurrence Handle10.1002/(SICI)1521-4095(199907)11:10<793::AID-ADMA793>3.0.CO;2-B

    Article  Google Scholar 

  • GR Irwin (1957) ArticleTitleAnalysis of stresses and strains near the end of a crack traversing a plate Trans ASME J Appl Mech E 24 361–364

    Google Scholar 

  • D Kessler H Levine (2003) ArticleTitleDoes the continuum theory of dynamic fracture work? Phys Rev E 68 036118–1/4 Occurrence Handle10.1103/PhysRevE.68.036118 Occurrence Handle2003PhRvE..68c6118K

    Article  ADS  Google Scholar 

  • M Marder (1991) ArticleTitleNew dynamical equations for cracks Phys Rev Lett 66 2484–2487 Occurrence Handle1050.74657 Occurrence Handle1104861 Occurrence Handle10.1103/PhysRevLett.66.2484 Occurrence Handle1991PhRvL..66.2484M

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • M Marder S Gross (1995) ArticleTitleOrigin of crack tip instabilities J Mech Phys Sol 43 1–48 Occurrence Handle0878.73053 Occurrence Handle1312562 Occurrence Handle10.1016/0022-5096(94)00060-I

    Article  MATH  MathSciNet  Google Scholar 

  • M Marder X Liu (1993) ArticleTitleInstability in lattice fracture Phys Rev Lett 71 2417–2420 Occurrence Handle10.1103/PhysRevLett.71.2417 Occurrence Handle1993PhRvL..71.2417M

    Article  ADS  Google Scholar 

  • Mielke SL, Troya D, Zhang S, Li J-L, Xiao S, Car R, Ruoff RS, Schatz GC,

  • NF Mott (1948) ArticleTitleBrittle fracture in mild steel plates Engineering 165 16–18

    Google Scholar 

  • Morozov NF, Petrov Yu V, Utkin AA (1990) Dokl Akad Nauk SSSR 313(2): 276 [Sov Phys Dokl 35:646]

    Google Scholar 

  • H. Murakami (1986) Stress intensity factors handbook. Publ Pergamon, Oxford UK

    Google Scholar 

  • H Neuber (1958) Theory of notch stresses Springer Berlin Occurrence Handle0962.74002

    MATH  Google Scholar 

  • V Novozhilov (1969) ArticleTitleOn a necessary and sufficient criterion for brittle strength Prik Mat Mek 33 212–222

    Google Scholar 

  • S Ogata Y Shibutani (2003) ArticleTitleIdeal tensile strength and band gap of single-walled carbon nanotube Phys Rev B 68 165409–1/4 Occurrence Handle10.1103/PhysRevB.68.165409 Occurrence Handle2003PhRvB..68p5409O

    Article  ADS  Google Scholar 

  • E Orowan (1948) ArticleTitleFracture and strength of solids Rep Progress Phys XII 185

    Google Scholar 

  • DM Owen SZ Zhuang AJ Rosakis G Ravichandran (1998) ArticleTitleExperimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets Int J Fract 90 153–174 Occurrence Handle10.1023/A:1007439301360

    Article  Google Scholar 

  • L Pechenik H Levine D Kessler (2002) ArticleTitleSteady-state mode I cracks in a viscoelastic triangular lattice J Mech Phys Sol 50 583–613 Occurrence Handle01761033 Occurrence Handle10.1016/S0022-5096(01)00061-8

    Article  MATH  Google Scholar 

  • V Petrov Yu WV Sitnikova (2004) ArticleTitleDynamic cracking resistance of structural materials predicted from impact fracture on aircraft alloy Tech Phys 49 57–60 Occurrence Handle10.1134/1.1642679

    Article  Google Scholar 

  • V Petrov Yu (1996) ArticleTitleQuantum analogy in the mechanics of fracture solids Phys Solid State 38 1846–1850 Occurrence Handle1996PhSS...38.1846P

    ADS  Google Scholar 

  • N Pugno R Ruoff (2004) ArticleTitleQuantized fracture mechanics Phil Mag 84 IssueID27 2829–2845 Occurrence Handle10.1080/14786430412331280382

    Article  Google Scholar 

  • N Pugno (2006) ArticleTitleOn the strength of the nanotube-based space elevator cable: from nanomechanics to megamechanics J Phys-Condens Mat 18 S1971–S1990 Occurrence Handle10.1088/0953-8984/18/33/S14 Occurrence Handle2006JPCM...18.1971P

    Article  ADS  Google Scholar 

  • L Slepyan (1981) ArticleTitleDynamics of brittle fracture in lattice Doklady Soviet Phys 26 538–540 Occurrence Handle0497.73107

    MATH  Google Scholar 

  • Tada H, Paris PC, Irwin GR (1985) The stress intensity factor handbook 2nd edn. Paris Productions Incorporated

  • D Taylor P Cornetti N Pugno (2005) ArticleTitleThe fracture mechanics of finite crack extensions Eng Frac Mech 72 1021–1028 Occurrence Handle10.1016/j.engfracmech.2004.07.001

    Article  Google Scholar 

  • HM Westergaard (1939) ArticleTitleBearing pressures and cracks J Appl Mech 6 49–53

    Google Scholar 

  • M-F Yu O Lourie MJ Dyer K Moloni TF Kelly RS Ruoff (2000) ArticleTitleStrength and breaking mechanism of multiwalled carbon nanotubes under tensile load Science 287 637–640 Occurrence Handle10.1126/science.287.5453.637 Occurrence Handle2000Sci...287..637Y

    Article  ADS  Google Scholar 

  • S Zhang SL Mielke R Khare D Troya RS Ruoff GC Schatz T Belytschko (2004) ArticleTitleMechanics of defects in carbon nanotubes: atomistic and multiscale simulations Phys Rev B 71 115403–1 /12 Occurrence Handle10.1103/PhysRevB.71.115403 Occurrence Handle2005PhRvB..71k5403Z

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Pugno.

Additional information

International Conference on Fracture XI–Symposium 34, on Physics and Scaling in Fracture

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugno, N.M. Dynamic quantized fracture mechanics. Int J Fract 140, 159–168 (2006). https://doi.org/10.1007/s10704-006-0098-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-0098-z

Keywords

Navigation