Skip to main content
Log in

Tissue heterogeneity, composite architecture and fractal dimension effects in the fracture of ageing human bone

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The mechanical characteristics of human bone, especially those relating to age, are of immense interest to everyone. A great amount of information has already been accumulated on the macromechanical/phenomenological aspects of bone behaviour and while some aspects, such as stiffness and strength, have been attributed to effects at the architectural/compositional level, some others like toughness have been related to events at the molecular/biophysical level. It is not always easy to unravel the intimate relationship between the architectural and remodelling changes at the macroscale to the biophysical/chemical effects occurring at the ultrastructural level. There is however, the mesostructural level (fractography), which is commonly overlooked or has been approached in a purely qualitative manner. In this article we concentrated primarily on the variation of toughness of ageing bone with age and then examined the fracture profile morphology of the various samples by fractal analysis. The results show that the way bone actually fractures, in either slow/ductile or fast/brittle fracture, has an underlying connection to the architectural status of each individual and the way ageing bone changes as a ‘material’ as well as a ‘collection’ of heterogeneous elements and structures. Of course, fracture morphology cannot simply and uniquely be described by one fractal dimension, but fracture nevertheless is determined by the intrinsic architecture of the bone structure and its material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L.M. Alves (2005) ArticleTitleFractal geometry concerned with stable and dynamic fracture mechanics Theoretical Applied Fracture Mechanics 44 44–57 Occurrence Handle10.1016/j.tafmec.2005.05.004

    Article  Google Scholar 

  • P. Braidotti E. Bemporad T. D’Alessio S.A. Sciuto L. Stagni (2000) ArticleTitleTensile experiments and SEM fractography on bovine subchondral bone Journal of Biomechanics 33 1153–1157 Occurrence Handle10.1016/S0021-9290(00)00074-9

    Article  Google Scholar 

  • D. Broek (1986) Elementary Engineering Fracture Mechanics EditionNumber4 Martinus Nijhoff (Publs) Dordrecht, The Netherlands Occurrence Handle0699.73070

    MATH  Google Scholar 

  • A.H. Burstein D.T. Reilly M. Martens (1976) ArticleTitleAging of bone tissue: mechanical properties Journal of Bone Joint Surgery 58-A 82–86

    Google Scholar 

  • P. Calvert J. Cesarano H. Chandra H. Denham S. Kasichainula R. Vaidyanathan (2002) ArticleTitleToughness in synthetic and biological multilayered systems Philosophical Transactions Royals Society-A 360 199–202 Occurrence Handle10.1098/rsta.2001.0925 Occurrence Handle2002RSPTA.360..199C

    Article  ADS  Google Scholar 

  • A.C. Courtney W.C. Hayes L.J. Gibson (1996) ArticleTitleAge-related differences in post-yield damage in human cortical bone - Experiment and model Journal of Biomechanics 29 1463–1471 Occurrence Handle10.1016/0021-9290(96)84542-8

    Article  Google Scholar 

  • A.C. Courtney W.C. Hayes L.J. Gibson (1996) ArticleTitleAge-related differences in post-yield damage in human cortical bone - Experiment and model Journal of Biomechanics 29 1463–1471 Occurrence Handle10.1016/0021-9290(96)84542-8

    Article  Google Scholar 

  • J.D. Currey (1979) ArticleTitleChanges in the impact energy absorption of bone with age Journal of Biomechanics 12 459–469 Occurrence Handle10.1016/0021-9290(79)90031-9

    Article  Google Scholar 

  • J.D. Currey K. Brear (1992a) ArticleTitleFractal analysis of compact bone and antler fracture surfaces Biomimetics 1 103–118

    Google Scholar 

  • J.D. Currey K. Brear P. Zioupos (1996b) ArticleTitleThe effects of ageing and changes in mineral content in degrading the toughness of human femora Journal of Biomechanics 29 257–260 Occurrence Handle10.1016/0021-9290(95)00048-8

    Article  Google Scholar 

  • J.D. Currey K. Brear P. Zioupos (2004) ArticleTitleNotch sensitivity of mineralised tissues in impact Proceedings Royals Society-B 271 517–522 Occurrence Handle10.1098/rspb.2003.2634

    Article  Google Scholar 

  • D.L. Davidson (1989) ArticleTitleFracture surface-roughness as a gauge of fracture toughness - Aluminium particulate composites Journal of Materials Science 24 681–687 Occurrence Handle10.1007/BF01107459 Occurrence Handle1989JMatS..24..681D

    Article  ADS  Google Scholar 

  • M. Grynpas (1993) ArticleTitleAge and disease related changes in the mineral of bone Calcified Tissue International 53 S57–S64 Occurrence Handle10.1007/BF01673403

    Article  Google Scholar 

  • B. Harris S.E. Dorey R.G. Cooke (1988) ArticleTitleStrength and toughness of fibre composites Composites Science Technology 31 121–141 Occurrence Handle10.1016/0266-3538(88)90087-5

    Article  Google Scholar 

  • L.P. Hiller S.M. Stover V.A. Gibson J.C. Gibeling C.S. Prater S.J. Hazelwood O.C. Yeh R.B. Martin (2003) ArticleTitleOsteon pullout in the equine third metacarpal bone: Effects of ex-vivo fatigue Journal of Orthopaedic Research 21 481–488 Occurrence Handle10.1016/S0736-0266(02)00232-2

    Article  Google Scholar 

  • M.A. Issa Md.A. Issa Md.S. Islam A. Chudnovsky (2003) ArticleTitleFractal dimension - a measure of fracture roughness and toughness of concrete Engineering Fracture Mechanics 70 125–137 Occurrence Handle10.1016/S0013-7944(02)00019-X

    Article  Google Scholar 

  • L. Knott A.J. Bailey (1998) ArticleTitleCollagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance Bone 22 181–187 Occurrence Handle10.1016/S8756-3282(97)00279-2

    Article  Google Scholar 

  • S.P. Lyu X.G. Zhu Z.N. Qi (1994) ArticleTitleCorrelation between the fractal dimension of fracture surfaces and fracture-toughness for ductile polymer materials Journal Polymer Science B -Polymer Physics 32 2151–2154 Occurrence Handle10.1002/polb.1994.090321303 Occurrence Handle1994JPoSB..32.2151L

    Article  ADS  Google Scholar 

  • R.W. McCalden J.A. McGeough M.B. Barker C.M. Court-Brown (1993) ArticleTitleAge-related changes in the tensile properties of cortical bone Journal of Bone and Joint Surgery 75-A 1193–1205

    Google Scholar 

  • R.W. McCalden J.A. McGeough M.B. Barker C.M. Court-Brown (1997) ArticleTitleAge-related changes in the compressive strength of cancellous bone - The relative importance of changes in density and trabecular architecture Journal of Bone and Joint Surgery 79-A 421–427

    Google Scholar 

  • B.B. Mandelbrot (1967) ArticleTitleHow long is the coast of Britain? Statistical self similarity and fractional dimensions Science 156 636–638 Occurrence Handle1967Sci...156..636M

    ADS  Google Scholar 

  • B.B. Mandelbrot D.E. Passoja A.J. Paullay (1984) ArticleTitleFractal character of fracture surface of metals Nature 308 721–722 Occurrence Handle10.1038/308721a0 Occurrence Handle1984Natur.308..721M

    Article  ADS  Google Scholar 

  • R.B. Martin D.B. Burr (1989) Structure function and adaptation of compact bone Raven Press New York, USA

    Google Scholar 

  • R.K. Nalla J.S. Stölkem J.H. Kinney R.O. Ritchie (2005) ArticleTitleFracture in human cortical bone: local fracture criteria and toughening mechanisms Journal of Biomechanics 38 1517–1525 Occurrence Handle10.1016/j.jbiomech.2004.07.010

    Article  Google Scholar 

  • K. Piekarski (1970) ArticleTitleFracture of bone Journal of Applied Physics 41 215–223 Occurrence Handle10.1063/1.1658323 Occurrence Handle1970JAP....41..215P

    Article  ADS  Google Scholar 

  • B.C. Sarkhar U.P.S. Chauhan (1967) ArticleTitleA new method for determining micro quantities of calcium in biological materials Analytical Biochemistry 20 155–156 Occurrence Handle10.1016/0003-2697(67)90273-4

    Article  Google Scholar 

  • C.B. Smith D.A. Smith (1976) ArticleTitleRelations between age, mineral density and mechanical properties of human femoral compacta Acta Orthopaedica Scandinavica 47 496–502 Occurrence Handle10.3109/17453677608988727

    Article  Google Scholar 

  • H.G. Tattersall G. Tappin (1966) ArticleTitleThe work of fracture and its measurement in metals, ceramics and other materials Journal of Materials Science 1 296–301 Occurrence Handle10.1007/BF00550177 Occurrence Handle1966JMatS...1..296T

    Article  ADS  Google Scholar 

  • C.H. Turner Y. Takano I. Owan (1995) ArticleTitleAging changes mechanical loading thresholds for bone formation in rats Bone 10 1544–1549

    Google Scholar 

  • D. Vashishth G.J. Gibson J.I. Khoury C. Wilson M.B. Schaffler J. Kimura D.P. Fyhrie (2001) ArticleTitleInfluence of Non-Enzymatic Glycation on Biomechanical Properties of Bone Bone 28 195–201 Occurrence Handle10.1016/S8756-3282(00)00434-8

    Article  Google Scholar 

  • D. Vashishth (2004) ArticleTitleRising crack-growth-resistance behaviour in cortical bone: implications for toughness measurements Journal of Biomechanics 37 943–946 Occurrence Handle10.1016/j.jbiomech.2003.11.003

    Article  Google Scholar 

  • J.C. Wall S.K. Chatterji J.W. Jeffery (1979) ArticleTitleAge-related changes in the density and tensile strength of human femoral cortical bone Calcified Tissue International 27 105–108 Occurrence Handle10.1007/BF02441170

    Article  Google Scholar 

  • X. Wang S. Puram (2004) ArticleTitleThe toughness of cortical bone and its relationship with age Annals Biomedical Engineering 32 123–135 Occurrence Handle10.1023/B:ABME.0000007797.92559.5e

    Article  Google Scholar 

  • P. Zioupos J.D. Currey A.J. Sedman (1994) ArticleTitleAn examination of the micromechanics of failure of bone and antler by acoustic emission tests and Laser Scanning Confocal Microscopy Medical Engineering and Physics 16 203–212 Occurrence Handle10.1016/1350-4533(94)90039-6

    Article  Google Scholar 

  • P. Zioupos X.T. Wang J.D. Currey (1996) ArticleTitleThe accumulation of fatigue-microdamage in human cortical bone of two different ages, in-vitro Clinical Biomechanics 11 365–375 Occurrence Handle10.1016/0268-0033(96)00010-1

    Article  Google Scholar 

  • P. Zioupos (1998) ArticleTitleRecent developments in the study of failure of solid biomaterials and bone: ‘fracture’ and ‘pre-fracture’ toughness Materials science and engineering C 6 33–40 Occurrence Handle10.1016/S0928-4931(98)00033-2

    Article  Google Scholar 

  • P. Zioupos J.D. Currey (1998) ArticleTitleChanges in the stiffness, strength and toughness of human cortical bone with age Bone 22 57–66 Occurrence Handle10.1016/S8756-3282(97)00228-7

    Article  Google Scholar 

  • P. Zioupos J.D. Currey A.J. Hamer (1999) ArticleTitleThe role of collagen in the declining mechanical properties of ageing human cortical bone Journal of Biomedical Materials Research 45 108–116 Occurrence Handle10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A

    Article  Google Scholar 

  • P. Zioupos (2001) ArticleTitleAgeing human bone: factors affecting its biomechanical properties and the role of collagen Journal of Biomaterials Applications 15 187–229 Occurrence Handle10.1106/5JUJ-TFJ3-JVVA-3RJ0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zioupos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zioupos, P., Kaffy, C. & Currey, J.D. Tissue heterogeneity, composite architecture and fractal dimension effects in the fracture of ageing human bone. Int J Fract 139, 407–424 (2006). https://doi.org/10.1007/s10704-006-6581-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-6581-8

Keywords

Navigation