Skip to main content
Log in

Orientation dependent fracture toughness of lamellar bone

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The critical energy release rate of human bone was determined for different crack propagation directions with three-point-bending tests using controlled crack extension. The local structure was characterised by small-angle X-ray scattering, SEM and polarised light microscopy and related to the energy required for crack extension. It turns out the collagen angle is decisive for switching the fracture behaviour of bone from brittle to quasi-ductile. A significant increase in the critical energy release rate as well as a change of the appearance of the crack path from straight and smooth to deflected and zig-zag is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J.D. Currey (1999) ArticleTitleThe design of mineralised hard tissues for their mechanical functions Journal of Experiment Biology 202 3285–3294

    Google Scholar 

  • J.C. Behiri W. Bonfield (1989) ArticleTitleOrientation dependence of the fracture-mechanics of cortical bone Journal of Biomechanics 22 863–872 Occurrence Handle10.1016/0021-9290(89)90070-5

    Article  Google Scholar 

  • G.E. Fantner T. Hassenkam J.H. Kindt J.C. Weaver H. Birkedal L. Pechenik J.A. Cutroni G.A.G. Cidade G.D. Stucky D.E. Morse P.K. Hansma (2005) ArticleTitleSacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bond fracture Nature Mater. 4 612–616 Occurrence Handle10.1038/nmat1428 Occurrence Handle2005NatMa...4..612F

    Article  ADS  Google Scholar 

  • P. Fratzl M. Groschner G. Vogl H. Plenk SuffixJr. J. Eschberger N. Fratzl-Zelman K. Koller P. Klaushofer (1992) ArticleTitleMineral crystals in calcified tissues: a comparative study by SAXS Journal of Bone Mineral Research 7 329–334 Occurrence Handle10.1002/jbmr.5650070313

    Article  Google Scholar 

  • P. Fratzl H.S. Gupta E.P. Paschalis P. Roschger (2004) ArticleTitleStructural and mechanical quality of the collagen-mineral nano-composite in bone Journal of Materials Chemistry 14 2115–2123 Occurrence Handle10.1039/b402005g

    Article  Google Scholar 

  • P. Fratzl S. Schreiber A. Boyde (1996) ArticleTitleCharacterization of bone mineral crystals in horse radius by small-angle X-ray scattering Calcified Tissue International 58 341–346 Occurrence Handle10.1007/s002239900056

    Article  Google Scholar 

  • H. Gao J. Baohua I.L. Jäger E. Arzt P. Fratzl (2003) ArticleTitleMaterials become insensitive to flaws at nanoscale: lessons from nature PNAS 100 5597–5600 Occurrence Handle10.1073/pnas.0631609100 Occurrence Handle2003PNAS..100.5597G

    Article  ADS  Google Scholar 

  • M. Giraud-Guille (1998) ArticleTitlePlywood structures in nature Current Opinion in Solid State & Materials Science 3 221–227 Occurrence Handle10.1016/S1359-0286(98)80094-6

    Article  Google Scholar 

  • H.S. Gupta W. Wagermaier G.A. Zickler D. Raz-Ben Aroush S.S. Funary P. Roschger H.D. Wagner P. Fratzl (2005) ArticleTitleNanoscale deformation mechanisms in bone Nano Letters 5 2108–2111 Occurrence Handle10.1021/nl051584b Occurrence Handle2005NanoL...5.2108G

    Article  ADS  Google Scholar 

  • D. Hull T.W. Clyne (1996) An introduction to composite materials EditionNumber2 Cambridge University Press Cambridge, UK

    Google Scholar 

  • S. Kamat X. Su R. Ballarini A.H. Heuer (2000) ArticleTitleStructural basis for the fracture toughness of the shell of the conch Strombus gigas Nature 405 1036–1040 Occurrence Handle10.1038/35016535 Occurrence Handle2000Natur.405.1036K

    Article  ADS  Google Scholar 

  • D. Liu S. Weiner H.D. Wagner (1999) ArticleTitleAnisotropic mechanical properties of lamellar bone using using miniature cantilever bending specimens Journal of Biomechanics 32 647–654 Occurrence Handle10.1016/S0021-9290(99)00051-2

    Article  Google Scholar 

  • R.B. Martin D.L. Boardman (1993) ArticleTitleThe effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties Journal of Biomechanics 26 1047–1054

    Google Scholar 

  • R.B. Martin J. Ishida (1989) ArticleTitleThe relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength Journal of Biomechanics 22 419–426 Occurrence Handle10.1016/0021-9290(89)90202-9

    Article  Google Scholar 

  • R.K. Nalla J.H. Kinney R.O. Ritchie (2003) ArticleTitleMechanistic fracture criteria for the failure of human cortical bone Nature Materials 2 164–168 Occurrence Handle10.1038/nmat832 Occurrence Handle2003NatMa...2..164N

    Article  ADS  Google Scholar 

  • R.K. Nalla J.J. Kruzic R.O. Ritchie (2004) ArticleTitleOn the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone 34 790–798 Occurrence Handle10.1016/j.bone.2004.02.001

    Article  Google Scholar 

  • R.K. Nalla J.J. Kruzic J.H. Kinney R.O. Ritchie (2005) ArticleTitleMechanistic aspects of fracture and R-curve behavior in human cortical bone Biomaterials 26 217–231 Occurrence Handle10.1016/j.biomaterials.2004.02.017

    Article  Google Scholar 

  • T.L. Norman S.V. Nivargikar D.B. Burr (1996) ArticleTitleResistance to crack growth in human cortical bone is greater in shear than in tension Journal of Biomechanics 29 1023–1031 Occurrence Handle10.1016/0021-9290(96)00009-7

    Article  Google Scholar 

  • H. Peterlik P. Roschger K. Klaushofer P. Fratzl (2006) ArticleTitleFrom brittle to ductile fracture of bone Nature Materials 5 52–55 Occurrence Handle10.1038/nmat1545 Occurrence Handle2006NatMa...5...52P

    Article  ADS  Google Scholar 

  • Peterlik, H., Roschger, P., Klaushofer, K. and Fratzl, P. (2006a). Supplementary information to the article: From brittle to ductile fracture of bone. Nature Materials, http://www.nature.com/nmat/journal/v5/n1/extref/nmat1545-s1.pdf

  • D.T. Reilly A.H. Burstein (1975) ArticleTitleThe elastic and ultimate properties of compact bone tissue Journal of Biomechanics 8 393–405 Occurrence Handle10.1016/0021-9290(75)90075-5

    Article  Google Scholar 

  • M. Sakai R.C. Bradt (1993) ArticleTitleFracture toughness testing of brittle materials International Materials Review 38 53–78

    Google Scholar 

  • J.B. Thompson et al. (2001) ArticleTitleBone indentation recovery time correlates with bond reforming time Nature 414 773–776 Occurrence Handle10.1038/414773a Occurrence Handle2001Natur.414..773T

    Article  ADS  Google Scholar 

  • H.D. Wagner S. Weiner (1992) ArticleTitleOn the relationship between the microstructure of bone and its mechanical stiffness Journal of Biomechanics 25 1311–1320 Occurrence Handle10.1016/0021-9290(92)90286-A

    Article  Google Scholar 

  • S. Weiner H.D. Wagner (1998) ArticleTitleThe material bone: structure mechanical function relations Annual Review of Materials Science 28 271–298 Occurrence Handle10.1146/annurev.matsci.28.1.271 Occurrence Handle1998AnRMS..28..271W

    Article  ADS  Google Scholar 

  • D. Vashishth K.E. Tanner W. Bonfield (2003) ArticleTitleExperimental validation of a microcracking-based toughening mechanism for cortical bone Journal of Biomechanics 36 121–124 Occurrence Handle10.1016/S0021-9290(02)00319-6

    Article  Google Scholar 

  • P. Zioupos J.D. Currey (1994) ArticleTitleThe extent of microcracking and the morphology of microcracks in damaged bone Journal of Materials Science 29 978–986 Occurrence Handle10.1007/BF00351420 Occurrence Handle1994JMatS..29..978Z

    Article  ADS  Google Scholar 

  • P. Zioupos X.T. Wang J.D. Currey (1996) ArticleTitleThe accumulation of fatigue microdamage in human cortical bone of two different ages in vitro Clinical Biomechanics 11 365–375 Occurrence Handle10.1016/0268-0033(96)00010-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herwig Peterlik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterlik, H., Roschger, P., Klaushofer, K. et al. Orientation dependent fracture toughness of lamellar bone. Int J Fract 139, 395–405 (2006). https://doi.org/10.1007/s10704-006-6634-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-6634-z

Keywords

Navigation