Skip to main content
Log in

Transformation Toughening in Zirconia-Enriched Composites: Micromechanical Modeling

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The paper presents a micromechanical model to describe the effects of the mismatch in material properties and micro-stress concentration on the mechanism of transformation toughening in zirconia-enriched composites. This model incorporates an earlier continuum model of transformation toughening for steady-state and growing cracks. Calculations were made over a wide range of elastic constants of matrices commonly found in practical applications. The obtained results indicate a strong influence of the mismatch in material properties of the matrix and zirconia particles on the toughening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. Budiansky J.W. Hutchinson J.C. Lambropoulos (1983) ArticleTitleContinuum theory of dilatant transformation toughening in ceramics Int. J. Solids Structures 19 IssueID4 337–355 Occurrence Handle0523.73078 Occurrence Handle10.1016/0020-7683(83)90031-8

    Article  MATH  Google Scholar 

  • A.G. Evans A.H. Heuer (1980) ArticleTitleTransformation toughening in ceramics martensitic transformations in crack-tip fields Journal of the American Ceramic Society 63 244–248

    Google Scholar 

  • J.D. Eshelby (1957) ArticleTitleThe determination of the elastic field on an ellipsoidal inclusion, and related problems Proc. R.Soc. London A 241 376–396 Occurrence Handle0079.39606 Occurrence Handle87326 Occurrence Handle1957RSPSA.241..376E Occurrence Handle10.1098/rspa.1957.0133

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • J.D. Eshelby (1959) ArticleTitleThe elastic field outside an ellipsoidal inclusion Proc. R. Soc. London A 252 561–569 Occurrence Handle0092.42001 Occurrence Handle110279 Occurrence Handle1959RSPSA.252..561E

    MATH  MathSciNet  ADS  Google Scholar 

  • J.D. Eshelby (1961) ArticleTitleElastic inclusions and inhomogeneities Prog. Solid Mech. 2 89–140

    Google Scholar 

  • R.C. Gravie R.H. Hannink R.T. Pascoe (1975) ArticleTitleCeramic steel Nature 258 704–730 Occurrence Handle10.1038/258704a0 Occurrence Handle1975Natur.258..703G

    Article  ADS  Google Scholar 

  • T.K. Gupta F.F. Lange J.H. Bechtold (1978) ArticleTitleEffect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase Journal of Material Science 13 1464–1470 Occurrence Handle10.1007/BF00553200 Occurrence Handle1978JMatS..13.1464G

    Article  ADS  Google Scholar 

  • Hutchinson, J. W. (1974). On steady state quasi-static crack growth. Harvard University Report, Division of Applied Sciences, DEAP S-8, April 1974.

  • M. Kchanov E. L. E. Montagut J. P. Laures (1990) ArticleTitleMechanics of crack-microcrack interactions Mechanics of Materials 10 59–71 Occurrence Handle10.1016/0167-6636(90)90017-A

    Article  Google Scholar 

  • F.F. Lange (1982) ArticleTitleTransformation toughening, part 4, fabrication, fracture toughness and strength of Al2O3-ZrO2 composites J. Mater. Sci. 17 247–254 Occurrence Handle10.1007/BF00809060 Occurrence Handle1982JMatS..17..247L

    Article  ADS  Google Scholar 

  • G. Magnania A. Brillante (2005) ArticleTitleEffect of the composition and sintering process on mechanical properties and residual stresses in zirconia-alumina composites Journal of the European Ceramic Society 25 3383–3392 Occurrence Handle10.1016/j.jeurceramsoc.2004.09.025

    Article  Google Scholar 

  • R.M. McMeeking A.G. Evans (1982) ArticleTitleMechanics of transformation toughening in brittle materials J. Am. Ceram. Soc. 65 242–246 Occurrence Handle10.1111/j.1151-2916.1982.tb10426.x

    Article  Google Scholar 

  • T. Mori K. Tanaka (1973) ArticleTitleAverage stress in matrix and average elastic energy of materials with misfitting inclusions Acta Metall 21 571–574 Occurrence Handle10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  • N.G. Pace G.A. Saunders Z. Stimengen J.S. Thorp (1969) ArticleTitleThe elastic constants and interatomic binding in yttria stabilised zirconia J. Mater. Sci. 4 1106–l 110 Occurrence Handle10.1007/BF00549851 Occurrence Handle1969JMatS...4.1106P

    Article  ADS  Google Scholar 

  • L.R.F. Rose (1986) ArticleTitleThe size of the transformed zone during steady-state cracking in transformation-toughened materials J. Mech. Phys. Solids. 34 609–616 Occurrence Handle10.1016/0022-5096(86)90040-2 Occurrence Handle1986JMPSo..34..609R

    Article  ADS  Google Scholar 

  • Stump, M. D. and Budiansky, B. (1989). Crack-growth resistance in transformation-toughened ceramics. Int. J. Solids Structures 25, 6, 635-646.

    Google Scholar 

  • K. Wakashima H. Tsukamoto (1991) ArticleTitleMean-Field Micromechanics Model and Its Application to the Analysis of Thermomechanical Behaviour of Composite Materials Mater. Sci. Eng. A 146 291–316 Occurrence Handle10.1016/0921-5093(91)90284-T

    Article  Google Scholar 

  • D. Zeng N. Katsube W.O. Soboyejo (2004) ArticleTitleDiscrete modelling of transformation toughening in heterogeneous materials Mechanics of Materials 36 1057–1071 Occurrence Handle10.1016/j.mechmat.2003.08.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Tsukamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukamoto, H., Kotousov, A. Transformation Toughening in Zirconia-Enriched Composites: Micromechanical Modeling. Int J Fract 139, 161–168 (2006). https://doi.org/10.1007/s10704-006-8374-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-8374-5

Keywords

Navigation