Skip to main content
Log in

Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A contour integral method is developed for computation of stress intensity and electric intensity factors for cracks in continuously nonhomogeneous piezoelectric body under a transient dynamic load. It is shown that the asymptotic fields in the crack-tip vicinity in a continuously nonhomogeneos medium is the same as in a homogeneous one. A meshless method based on the local Petrov-Galerkin approach is applied for computation of physical fields occurring in the contour integral expressions of intensity factors. A unit step function is used as the test functions in the local weak-form. This leads to local integral equations (LBIEs) involving only contour-integrals on the surfaces of subdomains. The moving least-squares (MLS) method is adopted for approximating the physical quantities in the LBIEs. The accuracy of the present method for computing the stress intensity factors (SIF) and electrical displacement intensity factors (EDIF) are discussed by comparison with available analytical or numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atluri SN (2004) The meshless method, (MLPG) for domain & BIE discretizations. Tech Science Press

  • Atluri SN, Han ZD and Shen S (2003). Meshless local Petrov-Galerkin (MLPG) approaches for solving the weakly-singular traction & displacement boundary integral equations. CMES: Comp Modeling Eng Sci 4: 507–516

    MATH  MathSciNet  Google Scholar 

  • Atluri SN, Liu HT and Han ZD (2006). Meshless local Petrov-Galerkin (MLPG) mixed finite difference method for solid mechanics. CMES: Comp Modeling Eng Sci 15: 1–16

    MathSciNet  Google Scholar 

  • Belytschko T, Krogauz Y, Organ D, Fleming M and Krysl P (1996). Meshless methods; an overview and recent developments. Comp Meth Appl Mech Eng 139: 3–47

    Article  MATH  Google Scholar 

  • Chen J, Liu ZX and Zou ZZ (2003). Electromechanical impact of a crack in a functionally graded piezoelectric medium. Theor Appl Fract Mech 39: 47–60

    Article  Google Scholar 

  • Chen WQ, Lu Y, Ye GR and Cai JB (2002). 3D electrostatic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loading. Arch Appl Mech 72: 39–51

    MATH  Google Scholar 

  • Davi G and Milazzo A (2001). Multidomain boundary integral formulation for piezoelectric materials fracture mechanics. Int J Solids Struct 38: 2557–2574

    Google Scholar 

  • Eischen JW (1987). Fracture of nonhomogeneous materials. Int J Fract 34: 3–22

    Google Scholar 

  • Enderlein M, Ricoeur A and Kuna M (2005). Finite element techniques for dynamic crack analysis in piezoelectrics.. Int J Fract 134: 191–208

    Article  MATH  Google Scholar 

  • Garcia-Sanchez F, Saez A and Dominguez J (2005). Anisotropic and piezoelectric materials fracture analysis by BEM. Comp Struct 83: 804–820

    Article  Google Scholar 

  • Garcia-Sanchez F, Zhang Ch, Sladek J and Sladek V (2007). 2-D transient dynamic crack analysis in piezoelectric solids by BEM. Comput Mater Sci 39: 179–186

    Article  Google Scholar 

  • Govorukha V and Kamlah M (2004). Asymptotic fields in the finite element analysis of electrically permeable interfacial cracks in piezoelectric bimaterials. Arch Appl Mech 74: 92–101

    MATH  Google Scholar 

  • Gruebner O, Kamlah M and Munz D (2003). Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng Fract Mech 70: 1399–1413

    Article  Google Scholar 

  • Gross D, Rangelov T and Dineva P (2005). 2D wave scattering by a crack in a piezoelectric plane using traction BIEM. SID: Struct Integrity Durability 1: 35–47

    Google Scholar 

  • Han F, Pan E, Roy AK and Yue ZQ (2006). Responses of piezoelectric, transversaly isotropic, functionally graded and multilayered half spaces to uniform circular surface loading. CMES: Comp Modeling Eng Sci 14: 15–30

    Google Scholar 

  • Jin ZH and Noda N (1994). Crack-tip singular fields in nonhomogeneous materials. ASME J Appl Mech 61: 738–740

    Article  MATH  Google Scholar 

  • Kim JH and Paulino GH (2003). The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. Int J Solids Struct 40: 3967–4001

    Article  MATH  Google Scholar 

  • Kuna M (1998). Finite element analyses of crack problems in piezoelectric structures. Comput Mater Sci 13: 67–80

    Article  ADS  Google Scholar 

  • Kuna M (2006). Finite element analyses of cracks in piezoelectric structures—a survey. Arch Appl Mech 76: 725–745

    Article  MATH  Google Scholar 

  • Li C and Weng GJ (2002a). Antiplane crack problem on functionally graded piezoelectric materials. ASME J Appl Mech 69: 481–488

    MATH  ADS  Google Scholar 

  • Li C and Weng GJ (2002b). Yoffe-type moving crack in a functionally graded piezoelectric material. Proc Roy Soc Lond A 458: 381–399

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Liu GR, Dai KY, Lim KM and Gu YT (2002). A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29: 510–519

    Article  MATH  Google Scholar 

  • Ohs RR and Aluru NR (2001). Meshless analysis of piezoelectric devices. Comput Mech 27: 23–36

    Article  MATH  Google Scholar 

  • Pan E (1999). A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng Anal Boundary Elements 23: 67–76

    Article  MATH  Google Scholar 

  • Pak YE (1990). Crack extension force in a piezoelectric material. ASME J Appl Mech 57: 647–653

    Article  MATH  Google Scholar 

  • Pak YE (1992). Linear electro-elastic fracture mechanics of piezoelectric materials. Int J Fract 54: 79–100

    Article  Google Scholar 

  • Pak YE and Herrmann CT (1986). Conservation laws and the material momentum tensor for the elastic dielectric. Int J Eng Sci 24: 1365–1374

    Article  MATH  MathSciNet  Google Scholar 

  • Park SB and Sun CT (1995). Effect of electric field on fracture of piezoelectric ceramics. Int J Fract 70: 203–216

    Article  Google Scholar 

  • Parton VZ and Kudryavtsev BA (1988). Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Paulino GH, Jin ZH, Dodds RH (2003) Failure of functionally graded materials. In: Karihaloo B, Knauss WG (eds), Comprehensive structural integrity, vol 2. Elsevier Science, pp 607–644

  • Ricoeur A and Kuna M. (2003). Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceram Soc 23: 1313–1328

    Article  Google Scholar 

  • Sheng N and Sze KY (2006). Multi-region Trefftz boundary element method for fracture analysis in plane piezoelectricity. Comput Mech 37: 381–393

    Article  MATH  Google Scholar 

  • Shindo Y, Narita F and Tanaka K (1996). Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip. Theor Appl Fract Mech 25: 65–71

    Article  Google Scholar 

  • Shindo Y, Tanaka K and Narita F (1997). Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mechanica 120: 31–45

    Article  MATH  Google Scholar 

  • Sladek J, Sladek V and Atluri SN (2004). Meshless local Petrov-Galerkin method in anisotropic elasticity. CMES: Comp Modeling Eng Sci 6: 477–489

    MATH  MathSciNet  Google Scholar 

  • Sladek J, Sladek V, Zhang Ch, Garcia-Sanchez F and Wunsche M (2006). Meshless local Petrov-Galerkin method for plane piezoelectricity. CMC: Comp Mater Continua 4: 109–118

    Google Scholar 

  • Sladek J, Sladek V, Zhang Ch, Solek P and Starek L (2007). Fracture analyses in continuously nonhomogeneous piezoelectric solids by the MLPG. CMES: Comp Modeling Eng Sci 19: 247–262

    MathSciNet  MATH  Google Scholar 

  • Sosa H (1991). Plane problems in piezoelectric media with defects. Int J Solids Struct 28: 491–505

    Article  MATH  Google Scholar 

  • Suresh S and Mortensen A (1998). Fundamentals of functionally graded materials. Institute of Materials, London

    Google Scholar 

  • Ueda S (2003). Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theor Appl Fract Mech 40: 225–236

    Article  MathSciNet  Google Scholar 

  • Yang JH and Lee KY (2001). Penny shaped crack in a three-dimensional piezoelectric strip under in-plane normal loadings. Acta Mechanica 148: 187–197

    Article  MATH  Google Scholar 

  • Wang BL and Noda N (2001). Thermally induced fracture of a smart functionally graded composite structure. Theor Appl Fract Mech 35: 93–109

    Article  Google Scholar 

  • Zhu T, Zhang JD and Atluri SN (1998). A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approaches. Comput Mech 21: 223–235

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu X, Wang Z and Meng A (1995). A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system. J Mater Sci Lett 14: 516–518

    Article  ADS  Google Scholar 

  • Zhu X, Zhu J, Zhou S, Li Q and Liu Z (1999). Microstructures of the monomorph piezoelectric ceramic actuators with functionally gradient. Sens Actuators A 74: 198–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sladek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sladek, J., Sladek, V., Zhang, C. et al. Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids. Int J Fract 145, 313–326 (2007). https://doi.org/10.1007/s10704-007-9130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-007-9130-1

Keywords

Navigation