Skip to main content
Log in

Application of incubation time approach to simulate dynamic crack propagation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The incubation time criterion for dynamic fracture is applied to simulate dynamic crack propagation. Being incorporated into ANSYS finite element package, this criterion is used to simulate the classical dynamic fracture experiments of Ravi-Chandar and Knauss on dynamic crack propagation in Homalite-100. In these experiments a plate with a cut simulating the crack was loaded by an intense pressure pulse applied on the faces of the cut. The load consisted of two consequent trapezoidal pulses. This, in the experimental conditions used by Ravi-Chandar and Knauss, resulted in a crack initiation, propagation, arrest and reinitiation. Dependence of the crack length on time was measured in those experiments. The results for crack propagation obtained by FEM modelling are in agreement with experimental measurements of crack length histories. This result shows the applicability of the incubation time approach to describe the initiation, propagation and arrest of dynamically loaded cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach JD (1974) Dynamic effects in brittle fracture. In: Nemat-Nasser S et al (eds) Mechanics today, 1. Pergamon, Elmsford, NY, pp 1–57

  • ANSYS (2006). User’s Guide, Release 11.0. ANSYS Inc., Pennsylvania, USA

    Google Scholar 

  • Atkinson C and Eshelby JD (1968). The flow of energy into the tip of a moving crack. Int J Fract 4: 3–8

    Article  Google Scholar 

  • Atroshenko SA, Krivosheev SI and Petrov YV (2002). Crack propagation upon dynamic failure of polymethylmethacrylate. Tech Phys 47: 194–199

    Article  CAS  Google Scholar 

  • Barenblatt GI (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129

    Article  Google Scholar 

  • Bradley WB and Kobayashi AS (1970). An investigation of propagating crack by dynamic photoelasticity. Exp Mech 10: 106–113

    Article  Google Scholar 

  • Bratov V, Gruzdkov A, Krivosheev S and Petrov Y (2004). Energy balance in the crack growth initiation under pulsed-load conditions. Doklady Phys 49: 338–341

    Article  CAS  Google Scholar 

  • Bratov V and Petrov Y (2007). Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth. Int J Solid Struct 44: 2371–2380

    Article  Google Scholar 

  • Broberg KB (1960). The propagation of a brittle crack. Archiv fur Fysik 18: 159–192

    Google Scholar 

  • Broberg KB (1989). The near-tip field at high crack velocities. Int J Fract 39: 1–13

    Article  Google Scholar 

  • Camacho GT and Ortiz M (1996). Computational modelling of impact damage in brittle materials. Int J Solid Struct 33: 2899–2938

    Article  Google Scholar 

  • Dally JW (1979). Dynamic photoelastic studies of fracture. Exp Mech 19: 349–361

    Article  Google Scholar 

  • Dally JW and Shukla A (1980). Energy loss in Homalite-100 during crack propagation and arrest. Eng Fract Mech 13: 807–817

    Article  Google Scholar 

  • Dally JW and Barker DB (1988). Dynamic measurements of initiation toughness at high loading rate. Exp Mech 28: 298–303

    Article  Google Scholar 

  • Freund LB (1972a). Crack propagation in an elastic solid subjected to general loading. I: Constant rate of extension. J Mech Phys Solid 20: 129–140

    Article  Google Scholar 

  • Freund LB (1972b). Crack propagation in an elastic solid subjected to general loading. II: Nonuniform rate of extension. J Mech Phys Solid 20: 141–152

    Article  Google Scholar 

  • Freund LB (1972c). Energy flux into the tip of an extending crack in an elastic solid. J Elast 2: 341–349

    Google Scholar 

  • Freund LB (1990). Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Homma H, Kanto Y and Tanka K (1992). Rapid load fracture testing. In: Chona, R and Corwin, WR (eds) Cleavage fracture under short stress pulse loading at low temperatures, ASTM STP 1130, pp 37–49. American society for testing and materials, Philadelphia

    Google Scholar 

  • Hopkinson J (1901) Original Papers. Cambridge University Press

  • Kalthoff JF (1986). Fracture behavior under high rates of loading. Eng Fract Mech 23: 289–298

    Article  Google Scholar 

  • Kobayashi AS, Wade BG, Bradley WB and Chiu ST (1974). Crack branching in Homalite-100 plates. Eng Fract Mech 6: 81–92

    Article  Google Scholar 

  • Kostrov BV (1966). Unsteady propagation of longitudinal shear cracks. Appl Math Mech 30: 1241–1248

    Article  Google Scholar 

  • Kostrov BV and Nikitin LV (1970). Some general problems of mechanics of brittle fracture. Archiwum Mechaniki Stosowanej 22: 749–775

    Google Scholar 

  • Ma CC and Freund LB (1986). The extent of the stress intensity factor field during crack growth under dynamic loading conditions. ASME J Appl Mech 53: 303–310

    Article  Google Scholar 

  • Morozov N and Petrov Y (2000). Dynamics of fracture. Springer-Verlag, Berlin

    Google Scholar 

  • Owen DM, Zhuang S, Rosakis AJ and Ravichandran G (1998). Experimental determination of dynamic crack initiation and propagation fracture toughness in aluminum sheets. Int J Fract 90: 153–174

    Article  CAS  Google Scholar 

  • Petrov YV (1991). On “Quantum” Nature of Dynamic Fracture of Brittle Solids. Doklady Akademii Nauk USSR 321: 66–68

    Google Scholar 

  • Petrov YV and Morozov NF (1994). On the modeling of fracture of brittle solids. J Appl Mech 61: 710–712

    Google Scholar 

  • Petrov YV, Morozov NF and Smirnov VI (2003). Structural micromechanics approach in dynamics of fracture. Fatig Fract Eng Mater Struct 26: 363–372

    Article  Google Scholar 

  • Petrov YV (2004). Incubation time criterion and the pulsed strength of continua: fracture, cavitation and electrical breakdown. Doklady Phys 49: 246–249

    Article  CAS  Google Scholar 

  • Petrov Y and Sitnikova E (2005). Temperature dependence of spall strength and the effect of anomalous melting temperatures in shock-wave loading. Tech Phys 50: 1034–1037

    Article  CAS  Google Scholar 

  • Ravi-Chandar K and Knauss WG (1984a). An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25: 247–262

    Article  Google Scholar 

  • Ravi-Chandar K and Knauss WG (1984b). An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26: 65–80

    Article  Google Scholar 

  • Ravi-Chandar K and Knauss WG (1984c). An experimental investigation into dynamic fracture: III. On steady state crack propagation and crack brunching. Int J Fract 26: 141–154

    Article  Google Scholar 

  • Ravi-Chandar K and Knauss WG (1984d). An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks. Int J Fract 26: 189–200

    Article  Google Scholar 

  • Ravi-Chandar K and Knauss WG (1987). On the characterization of the transient stress field near the tip of a crack. J Appl Mech 54: 72–78

    Article  Google Scholar 

  • Remmers JJC, Borst R de and Needleman A (2004). A cohesive segments approach for dynamic crack growth. In: Ahzi, S, Cherkaoui, M, Khaleel, MA, Zbib, HM, Zikry, MA, and Lamatina, B (eds) Multiscale modeling and characterization of eleastic-inelastic behavior of engineering materials, pp 299–306. Kluwer, Dordrecht

    Google Scholar 

  • Rizal S and Homma H (2000). Dimple fracture under short pulse loading. Int J Impact Eng 90: 83–102

    Google Scholar 

  • Rosakes AJ and Zehnder AT (1985). On dynamic fracture of structural metals. Int J Fract 27: 169–186

    Article  Google Scholar 

  • Schardin H and Struth W (1938). Hochfrequezkinematographische untersuchung der bruchvorgänge in glas. Glastechnische Berichte 16: 219

    CAS  Google Scholar 

  • Shokey DA (1986). Short pulse fracture mechanics. J Eng Fract Mech 23: 311–319

    Article  Google Scholar 

  • Smith GC (1975) An experimental investigation of the fracture of a brittle material, Ph.D. Thesis, California Institute of Technology

  • Wallner H (1938). Linienstrukturen an bruchflächen. Z. Physik 114: 368–370

    Article  Google Scholar 

  • Wells AA and Post D (1958). The dynamic stress distribution surrounding a running crack—A photoelastic analysis. Proc Soc Exp Stress Anal 16: 69–93

    Google Scholar 

  • Willis JR (1975). Equations of motion for propagating crack. Mech Phys Frac, The Metals Soc, London 1: 57–67

    Google Scholar 

  • Xu X and Needleman A (1995). Numerical simulations of dynamic crack growth along an interface. Int J Fract 74: 289–324

    Article  CAS  Google Scholar 

  • Yoffe EH (1951). The moving Griffith crack. Phil Mag 42: 739–750

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bratov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratov, V., Petrov, Y. Application of incubation time approach to simulate dynamic crack propagation. Int J Fract 146, 53–60 (2007). https://doi.org/10.1007/s10704-007-9135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-007-9135-9

Keywords

Navigation