Skip to main content
Log in

Time dependent crack tip enrichment for dynamic crack propagation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We study several enrichment strategies for dynamic crack propagation in the context of the extended finite element method and the effect of different directional criteria on the crack path. A new enrichment method with a time dependent enrichment function is proposed. In contrast to previous approaches, it entails only one crack tip enrichment function. Results for stress intensity factors and crack paths for different enrichments and direction criteria are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atluri SN, Nishioka T (1985) Numerical studies in dynamic fracture mechanics. Int J Frac 27(3): 245–261

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks formed in brittle fracture. Adv Appl Mech 7: 55–129

    Article  MathSciNet  Google Scholar 

  • Belytschko T, Chen H (2004) Singular enrichment finite element method for elastodynamic crack propagation. Int J Comput Method 1(1): 1–15

    Article  MATH  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Method Engin 58: 1873–1905

    Article  MATH  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Method Appl Mech Engin 139(1–4): 3–47

    Article  MATH  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  • Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Method Engin 50(4): 993–1013

    Article  MATH  Google Scholar 

  • Black T, Belytschko T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Method Engin 45: 601–620

    Article  MATH  Google Scholar 

  • Böhme W, Kalthoff JF (1982) The behavior of notched bend specimens in impact testing. Int J Frac 20(4): 139–143

    Article  Google Scholar 

  • Bui HD (1978) Mecanique de la rupture fragile. Masson, Paris

    Google Scholar 

  • Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Method Appl Mech Engin 195(7-8): 501–515

    Article  MATH  Google Scholar 

  • Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. part 1: mass lumping for arbitrary enrichment functions. Comput Method Appl Mech Engin 198(30–32): 2297–2317

    Article  Google Scholar 

  • Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control (in one-point integration of isoparametric finite element analysis). Int J Numer Method Engin 17: 679–706

    Article  MATH  Google Scholar 

  • Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Method Engin 40(8): 1483–1504

    Article  MathSciNet  Google Scholar 

  • Freund LB (1972) Crack propagation in an elastic solid subjected to general loading. Pt. 1. Constant rate of extension. J Mech Phys Solid 20(3): 129–140

    Article  ADS  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Freund LB, Douglas AS (1982) Influence of inertia on elastic-plastic antiplane-shear crack growth. J Mech Phys Solid 30(1): 59–74

    Article  MATH  ADS  Google Scholar 

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Frac 10(4): 507–523

    Article  Google Scholar 

  • Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Met Appl Mech Eng 193(33–35): 3523–3540

    Article  MATH  MathSciNet  Google Scholar 

  • Hillerborg A, Modeer M, Petersson PE et al (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6(6): 773–782

    Article  Google Scholar 

  • Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses—a review of recent work. Int J Frac 27(3): 277–298

    Article  Google Scholar 

  • Koh BC, Kikuchi N (1987) New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity. Comput Method Appl Mech Engin 65(1): 1–46

    Article  MATH  MathSciNet  Google Scholar 

  • Lee YJ, Freund LB (1990) Fracture initiation due to asymmetric impact loading of an edge cracked plate. J Appl Mech 57: 104

    Article  Google Scholar 

  • Linder C, Armero F (2009) Finite elements with embedded branching. Finite Elem Anal Des 45: 280–293

    Article  MathSciNet  Google Scholar 

  • Liu WK, Hu Y, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Met Engin 37(19): 3263–3289

    Article  MATH  MathSciNet  Google Scholar 

  • Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl Mech Engin 139(1–4): 289–314

    Article  MATH  Google Scholar 

  • Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the extended finite element method (X-FEM). Int J Numer Method Engin 68: 911–939

    Article  MATH  Google Scholar 

  • Menouillard T, Réthoré J, Moës N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Method Engin 74(3): 447–474

    Article  MATH  Google Scholar 

  • Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Engin Frac Mech 69: 813–833

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Method Engin 46(1): 131–150

    Article  MATH  Google Scholar 

  • Nishioka T, Murakami R, Takemoto Y (1990) The use of the dynamic J integral (J’) in finite element simulation of mode I and mixed-mode dynamic crack propagation. Int J Pres Ves Pip 44: 329–352

    Article  Google Scholar 

  • Rabczuk T, Song JH, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Engin Frac Mech 76: 730–741

    Article  Google Scholar 

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Amsterdam

    Google Scholar 

  • Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Numer Met Engin 63: 631–659

    Article  MATH  Google Scholar 

  • Rosakis AJ, Freund LB (1982) Optical measurement of the plastic strain concentration at a crack tip in a ductile steel plate. J Engin Mater Technol(Transactions of the ASME) 104(2): 115–120

    Article  Google Scholar 

  • Rozycki P, Moës N, Béchet E, Dubois C (2008) X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries. Comput Method Appl Mech Engin 197(5): 349–363

    Article  MATH  Google Scholar 

  • Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Method Engin 67: 868–893

    Article  MATH  Google Scholar 

  • Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Method Engin 51: 943–960

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Menouillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menouillard, T., Song, JH., Duan, Q. et al. Time dependent crack tip enrichment for dynamic crack propagation. Int J Fract 162, 33–49 (2010). https://doi.org/10.1007/s10704-009-9405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9405-9

Keywords

Navigation