Skip to main content
Log in

Deformation, fracture, and fragmentation in brittle geologic solids

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A model is developed for mechanical behavior and failure of brittle solids of geologic origin. Mechanisms considered include elastic stretch and rotation, thermal expansion, and deformation associated with micro-cracks. Decohesion on preferred cleavage planes in the solid, and subsequent effects of crack opening and sliding, are modeled. Explicit volume averaging over an element of material containing displacement discontinuities, in conjunction with the generalized divergence theorem, leads to an additive decomposition of the deformation gradient into contributions from thermoelasticity in the intact material and displacement jumps across micro-cracks. This additive decomposition is converted into a multiplicative decomposition, and the inelastic velocity gradient is then derived in terms of rates of crack extension, opening, and sliding on discrete planes in the microstructure. Elastic nonlinearity at high pressures, elastic moduli degradation from micro-cracking, dilatancy, pressure- and strain rate-sensitive yield, and energy dissipation from crack growth and sliding are formally addressed. Densities of micro-cracks are treated as internal state variables affecting the free energy of the solid. The mean fragment size of particles of failed material arises from geometric arguments in terms of the evolving average crack radius and crack density, with smaller fragments favored at higher loading rates. The model is applied to study granite, a hard polycrystalline rock, under various loading regimes. Dynamic stress–strain behavior and mean fragment sizes of failed material are realistically modeled. Possible inelastic anisotropy can be described naturally via prescription of cleavage planes of varying strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ai HA, Ahrens TJ (2006) Simulation of dynamic response of granite: a numerical approach of shock-induced damage beneath impact craters. Int J Impact Eng 33: 1–10

    Article  Google Scholar 

  • Almeida LCR, Vargas EA, Figueiredo RP (2006) Mechanical characterization of rock-splitting planes in granitic rocks. Int J Rock Mech Mining Sci 43: 1139–1145

    Article  Google Scholar 

  • Amaral PM, Rosa LG, Fernandes JC (1999) Fracture toughness of different types of granite. Int J Rock Mech Mining Sci 36: 839–842

    Article  Google Scholar 

  • Amitrano D (2006) Rupture by damage accumulation in rocks. Int J Fract 139: 369–381

    Article  MATH  Google Scholar 

  • Andrade JE, Baker JW, Ellison KC (2008) Random porosity fields and their influence on the stability of granular media. Int J Numer Anal Meth Geomech 32: 1147–1172

    Article  Google Scholar 

  • Asaro RJ (1983) Crystal plasticity. ASME J Appl Mech 50: 921–934

    MATH  Google Scholar 

  • Astrom JA (2007) Statistical analysis of shear cracks on rock surfaces. Eur Phys J B 56: 291–295

    Article  CAS  ADS  Google Scholar 

  • Bazant ZP, Caner FC, Carol I, Adley MD, Akers SA (2000a) Microplane model M4 for concrete. I: formulation with work-conjugate deviatoric stress. ASCE J Eng Mech 126: 944–953

    Article  Google Scholar 

  • Bazant ZP, Adley MD, Caner FC, Carol I, Jirasek M, Akers SA (2000b) Large strain generalization of microplane model for concrete and application. ASCE J Eng Mech 126: 971–980

    Article  Google Scholar 

  • Brace WF (1978) Volume changes during fracture and frictional sliding: a review. Pure Appl Geophys 116: 603–614

    Article  ADS  Google Scholar 

  • Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71: 3939–3953

    ADS  Google Scholar 

  • Budianski B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12: 81–97

    Article  Google Scholar 

  • Christensen RJ, Swanson SR, Brown WS (1974) Torsional shear measurements of the frictional properties of Westerly granite. Defense Nuclear Agency Report AD-787-043, Washington, DC

  • Clayton JD (2005a) Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J Mech Phys Solids 53: 261–301

    Article  CAS  MATH  ADS  Google Scholar 

  • Clayton JD (2005b) Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int J Solids Struct 42: 4613–4640

    Article  MATH  Google Scholar 

  • Clayton JD (2006) Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals. Theo Appl Fract Mech 45: 163–185

    Article  CAS  Google Scholar 

  • Clayton JD (2008) A model for deformation and fragmentation in crushable brittle solids. Int J Impact Eng 35: 269–289

    Article  Google Scholar 

  • Clayton JD, McDowell DL (2003) Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int J Solids Struct 40: 5669–5688

    Article  MATH  Google Scholar 

  • Clayton JD, McDowell DL (2004) Homogenized finite elastoplasticity and damage: theory and computations. Mech Mater 36: 799–824

    Google Scholar 

  • Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 17: 597–613

    Article  ADS  Google Scholar 

  • Eckart C (1948) The thermodynamics of irreversible processes IV. The theory of elasticity and anelasticity. Phys Rev 73: 373–382

    Article  CAS  MathSciNet  MATH  ADS  Google Scholar 

  • Englman R, Rivier N, Jaeger Z (1987) Fragment size distribution in disintegration by maximum entropy formalism. Phil Mag B 56: 751–769

    Article  Google Scholar 

  • Eringen AC (1962) Nonlinear theory of continuous media. McGraw-Hill, New York

    Google Scholar 

  • Eshelby JD (1973) Dislocation theory for geophysical applications. Phil Trans R Soc Lond A 274: 331–338

    Article  ADS  Google Scholar 

  • Espinosa HD, Zavattieri PD, Dwivedi SK (1998) A finite deformation continuum discrete model for the description of fragmentation and damage in brittle materials. J Mech Phys Solids 46: 1909–1942

    Article  CAS  MathSciNet  MATH  ADS  Google Scholar 

  • Foster CD, Borja RI, Regueiro RA (2007) Embedded strong discontinuity finite elements for fractured geomaterials with variable friction. Int J Numer Meth Eng 72: 549–581

    Article  MathSciNet  Google Scholar 

  • Furnish MD (1995) Measuring the dynamic compression and release behavior of rocks associated with HYDROPLUS (Part II). Sandia Report SAND95-1472, Albuquerque, NM

  • Golshani A, Okui Y, Oda M, Takemura T (2006) A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38: 287–303

    Article  Google Scholar 

  • Goodman RE (1989) Rock mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  • Grady DE (1982) Local inertial effects in dynamic fragmentation. J Appl Phys 53: 322–325

    Article  ADS  Google Scholar 

  • Grady DE (1988) The spall strength of condensed matter. J Mech Phys Solids 36: 353–384

    Article  ADS  Google Scholar 

  • Grady DE (1995) Shock equation of state properties of concrete. Sandia Report SAND95-2215C, Albuquerque, NM

  • Grady DE, Winfree NA (2001) Impact fragmentation of high-velocity compact projectiles on thin plates: a physical and statistical characterization of fragment debris. Int J Impact Eng 26: 249–262

    Article  Google Scholar 

  • He H, Jin X, Jing F, Ahrens TJ (1996) Characteristic of dynamic tensile fracture in augite-peridotite. In: Schmidt SC, Tao WC(eds) Shock compression of condensed matter. AIP Press, New York, pp 593–596

    Google Scholar 

  • Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc A 326: 131–147

    Article  MATH  ADS  Google Scholar 

  • Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90: 3105–3125

    Article  ADS  Google Scholar 

  • Holcomb DJ (1978) A quantitative model of dilatancy in dry rock and its application to Westerly granite. J Geophys Res 83: 4941–4950

    Article  ADS  Google Scholar 

  • Ichikawa Y, Kawamura K, Uesugi K, Seo YS, Fujii N (2001) Micro- and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis. Comp Meth Appl Mech Eng 191: 47–72

    Article  MATH  Google Scholar 

  • Imam A, Johnson GC (1998) Decomposition of the deformation gradient in thermoelasticity. ASME J Appl Mech 65: 362–366

    MathSciNet  Google Scholar 

  • Johnson GR, Holmquist TJ (1999) Response of boron carbide subjected to large strains, high strain rates, and high pressures. J Appl Phys 85: 8060–8073

    Article  CAS  ADS  Google Scholar 

  • Kingsbury SJ, Tsembelis K, Proud WG (2004) The dynamic properties of the Atlanta Stone Mountain granite. In: Furnish MD, Gupta YM, Forbes JW(eds) Shock compression of condensed matter. AIP Press, New York, pp 1454–1457

    Google Scholar 

  • Kraft RH, Molinari JF, Ramesh KT, Warner DH (2008) Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties. J Mech Phys Solids 56: 2618–2641

    Article  CAS  MATH  ADS  Google Scholar 

  • Lee EH (1969) Elastic-plastic deformation at finite strains. ASME J Appl Mech 36: 1–6

    MATH  Google Scholar 

  • Li HB, Zhao J, Li TJ (2000) Micromechanical modeling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int J Rock Mech Mining Sci 37: 923–935

    Article  Google Scholar 

  • Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38: 21–39

    Article  CAS  Google Scholar 

  • Logan JM, Handin J (1970) Triaxial compression testing at intermediate strain rates. In: Clark GB (ed) Proceedings of the 12th symposium on rock mechanics, Amer Inst Mining Metallurgical and Petroleum Engineers, Rolla, MS, pp 167–194

  • Maranini E, Yamaguchi T (2001) A non-associated viscoplastic model for the behaviour of granite in triaxial compression. Mech Mater 33: 283–293

    Article  Google Scholar 

  • Margolin LG (1983) Elastic moduli of a cracked body. Int J Fract 22: 65–79

    Article  Google Scholar 

  • Margolin LG (1984) Microphysical models for inelastic material response. Int J Eng Sci 22: 1171–1179

    Article  Google Scholar 

  • Maqsood A, Anis-ur-Rehman M, Gul IH (2003) Chemical composition, density, specific gravity, apparent porosity, and thermal transport properties of volcanic rocks in the temperature range 253 to 333 K. J Chem Eng Data 48: 1310–1314

    Article  CAS  Google Scholar 

  • Miller O, Freund LB, Needleman A (1999) Modeling and simulation of dynamic fragmentation in brittle materials. Int J Fract 96: 101–125

    Article  Google Scholar 

  • Millett JCF, Tsembelis K, Bourne NK (2000) Longitudinal and lateral stress measurements in shock-loaded gabbro and granite. J Appl Phys 87: 3678–3682

    Article  CAS  ADS  Google Scholar 

  • Moss WC, Gupta YM (1982) A constitutive model describing dilatancy and cracking in brittle rocks. J Geophys Res 87: 2985–2998

    Article  ADS  Google Scholar 

  • Nemat-Nasser S (1999) Averaging theorems in finite deformation plasticity. Mech Mater 31: 493–523

    Article  Google Scholar 

  • Odedra A, Ohnaka M, Mochizuki H, Sammonds P (2001) Temperature and pore pressure effects on the shear strength of granite in the brittle-plastic transition regime. Geophys Res Lett 28: 3011–3014

    Article  ADS  Google Scholar 

  • Paliwal B, Ramesh KT (2008) An interacting micro-crack damage model for failure of brittle materials under compression. J Mech Phys Solids 56: 896–923

    Article  CAS  MATH  ADS  Google Scholar 

  • Rajendran AM (1994) Modeling the impact behavior of AD85 ceramic under multiaxial loading. Int J Impact Eng 15: 749–768

    Article  Google Scholar 

  • Regueiro RE (2009) Finite strain micromorphic pressure- sensitive plasticity. ASCE J Eng Mech 135: 178–191

    Article  Google Scholar 

  • Rosenberg JT (1971) Dynamic shear strength of shock-loaded granite and polycrystalline quartz. Stanford Research Institute Report SRI-PYU-7852, Menlo Park, CA

  • Rubin MB, Lomov I (2003) A thermodynamically consistent large deformation elastic-viscoplastic model with directional tensile failure. Int J Solids Struct 40: 4299–4318

    Article  MATH  Google Scholar 

  • Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23: 371–394

    Article  ADS  Google Scholar 

  • Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 88: 10359–10370

    Article  ADS  Google Scholar 

  • Sano O, Kudo Y, Yoshiaki M (1992) Experimental determination of elastic constants of oshima granite, barre granite, and chelmsford granite. J Geophys Res 97: 3367–3379

    Article  ADS  Google Scholar 

  • Schock RN, Heard HC (1974) Static mechanical properties and shock loading response of granite. J Geophys Res 79: 1662–1666

    Article  ADS  Google Scholar 

  • Seaman L, Curran DR, Murri WJ (1985) A continuum model for dynamic tensile microfracture and fragmentation. ASME J Appl Mech 52: 593–600

    Article  Google Scholar 

  • Seo YS, Ichikawa Y, Kawamura K (1999) Stress–strain response of rock forming minerals by molecular dynamics simulation. Mater Sci Res Int 5: 13–20

    CAS  Google Scholar 

  • Simmons G, Todd T, Baldridge WS (1975) Toward a quantitative relationship between elastic properties and cracks in low porosity rocks. Amer J Sci 275: 318–345

    Google Scholar 

  • Teodosiu C (1982) Elastic models of crystal defects. Springer-Verlag, Berlin

    Google Scholar 

  • Touloukian YS, Kirby RK, Taylor ER, Lee TYR (1977) Thermophysical properties of matter. Vol 13, thermal expansion—nonmetallic solids. Plenum, New York

    Google Scholar 

  • Vogler TJ, Clayton JD (2008) Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J Mech Phys Solids 56: 297–335

    Article  CAS  ADS  Google Scholar 

  • Warner DH, Molinari JF (2006) Micromechanical finite element modeling of compressive fracture in confined alumina ceramic. Acta Mater 54: 5135–5145

    Article  CAS  Google Scholar 

  • Wenk H-R, Monteiro PJM, Shomglin K (2008) Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from the Santa Rosa mylonite zone. J Mater Sci 43: 1278–1285

    Article  CAS  ADS  Google Scholar 

  • Winkler KW, Liu X (1996) Measurements of third-order elastic constants in rocks. J Acoust Soc Amer 100: 1392–1398

    Article  ADS  Google Scholar 

  • Zienkiewicz OC, Pande GN (1977) Time-dependent multilaminate model of rocks—a numerical study of deformation and failure of rock masses. Int J Numer Anal Meth Geomech 1: 219–247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clayton, J.D. Deformation, fracture, and fragmentation in brittle geologic solids. Int J Fract 163, 151–172 (2010). https://doi.org/10.1007/s10704-009-9409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9409-5

Keywords

Navigation