Skip to main content
Log in

Analysis and computations of oscillating crack propagation in a heated strip

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents a computational analysis and several simulations of an existing experiment, which deals with a quasi-static thermal crack propagation in a glass plate. The experimental observation was that a straight or oscillatory crack propagation occurred depending on the plate width and thermal loading. The goal here is to simulate this experiment with the recent numerical tool such as XFEM. First, the analysis of the settings of the experiment is developed by providing the computed energy release rate of the crack for a wide range of experiment settings parameters. Second, different crack propagations are simulated, and show a good agreement with the experimental observation of straight or oscillatory paths. Third, a study of the results given by the fracture criteria (maximum hoop stress and Local Symmetry criteria) is also presented for this particular experiment in order to evaluate their differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({a, \dot{a}}\) :

Crack length and velocity

t :

Time

T :

Temperature

\({{\underline{\underline{\sigma}}}}\) :

Stress tensor

\({{\underline{\underline{\varepsilon}}}}\) :

Strain tensor

\({\mathbb{C}}\) :

Linear elastic behavior law

\({\underline{\underline{I_d}}}\) :

Identity matrix

K1, K2:

Stress intensity factors

θ c :

Crack angle

G :

Energy release rate

α :

Coefficient of thermal expansion

ρ :

Density

E :

Young’s modulus

ν :

Poisson’s ratio

k :

Thermal conductivity

D :

Thermal diffusivity

c p :

Specific heat capacity

c r :

Rayleigh wave speeds

K Ic :

Fracture toughness

G c :

Critical energy release rate

z :

Vertical position of the crack tip

T hot :

Temperature of the oven

T cold :

Temperature of the water

ΔT = T hot T cold :

Temperature difference

V :

Dipping velocity

h :

Distance water-oven

w :

Plate width

References

  • Adda-Bedia M, Arias R, Ben Amar M, Lund F (1999) Generalized Griffith criterion for dynamic fracture and the stability of crack motion at high velocities. Phys Rev E 60(2): 2366–2376

    Article  CAS  ADS  Google Scholar 

  • Adda-Bedia M, Pomeau Y (1995) Crack instabilities of a heated glass strip. Phys Rev E 52: 4105

    Article  CAS  ADS  Google Scholar 

  • Amestoy M, Leblond JB (1992) Crack paths in plane situations–II. Detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29(4): 465–501

    Article  MATH  MathSciNet  Google Scholar 

  • Attigui M, Petit C (1997) Mixed-mode separation in dynamic fracture mechanics : New path independent integrals. Int J Fract 84(1): 19–36

    Article  Google Scholar 

  • Bahr HA, Fischer G, Weiss HJ (1986) Thermal-shock crack patterns explained by single and multiple crack propagation. J Mater Sci 21(8): 2716–2720

    Article  CAS  ADS  Google Scholar 

  • Bahr HA, Gerbatsch A, Bahr U, Weiss HJ (1995) Oscillatory instability in thermal cracking: a first-order phase-transition phenomenon. Phys Rev E 52(1): 240–243

    Article  CAS  ADS  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  • Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4): 993–1013

    Article  MATH  Google Scholar 

  • Buckingham E (1915) The principle of similitude. Nature 96(3): 396–397

    Article  MATH  ADS  Google Scholar 

  • Corson F, Adda-Bedia M, Henry H, Katzav E (2009) Thermal fracture as a framework for quasi-static crack propagation. Int J Fract 158: 1–14

    Article  MATH  Google Scholar 

  • Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16(2): 155–169

    Article  Google Scholar 

  • Deegan RD, Chheda S, Patel L, Marder M, Swinney HL, Kim J, de Lozanne A (2003) Wavy and rough cracks in silicon. Phys Rev E 67(6): 66209

    Article  ADS  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85: 519–527

    Google Scholar 

  • Ferney BD, De Vary MR, Hsia KJ, Needleman A (1999) Oscillatory crack growth in glass. Scripta materialia 41(3): 275–281

    Article  CAS  Google Scholar 

  • Freund LB (1972) Crack Propagation in an elastic solid subjected to general loading. Pt. 1. Constant rate of extension. J Mech Phys Solids 20(3): 129–140

    Article  MathSciNet  ADS  Google Scholar 

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10(4): 507–523

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, pp 163–198

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2): 342–368

    Article  MATH  CAS  ADS  Google Scholar 

  • Katzav E, Adda-Bedia M, Arias R (2007) Theory of dynamic crack branching in brittle materials. Int J Fract 143(3): 245–271

    Article  MATH  Google Scholar 

  • Katzav E, Adda-Bedia M, Derrida B (2007) Fracture surfaces of heterogeneous materials: a 2D solvable model. EPL (Europhys Lett) 78: 46006

    Article  ADS  Google Scholar 

  • Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2): 165–177

    Article  Google Scholar 

  • Marder M (1994) Instability of a crack in a heated strip. Phys Rev E 49(1): 51–54

    Article  ADS  Google Scholar 

  • Menouillard T, Elguedj T, Combescure A (2006) Mixed mode stress intensity factors for graded materials. Int J Solids Struct 43: 1946–1959

    Article  MATH  Google Scholar 

  • Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM). Int J Numer Methods Eng 68: 911–939

    Article  MATH  Google Scholar 

  • Menouillard T, Réthoré J, Moës N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74(3): 447–474

    Article  MATH  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150

    Article  MATH  Google Scholar 

  • Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525

    Article  MATH  Google Scholar 

  • Pham VB, Bahr HA, Bahr U, Balke H, Weiss HJ (2008) Global bifurcation criterion for oscillatory crack path instability. Phys Rev E 77(6): 66114

    Article  ADS  Google Scholar 

  • Pla O (1996) Modelling fracture driven by a thermal gradient. Model Simul Mater Sci Eng 4(2): 193–202

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Reddy KPR, Fontana EH, Helfinstine JD (1988) Fracture toughness measurement of glass and ceramic materials using chevron-notched specimens. J Am Ceram Soc 71(6): 310–313

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by cracks and notches. J Appl Mech (Trans ASME) 35: 379–386

    Google Scholar 

  • Ronsin O, Heslot F, Perrin B (1995) Experimental study of quasistatic brittle crack propagation. Phys Rev Lett 75(12): 2352–2355

    Article  CAS  ADS  PubMed  Google Scholar 

  • Ronsin O, Perrin B (1997) Multi-fracture propagation in a directional crack growth experiment. Europhys Lett 38(6): 435–440

    Article  CAS  ADS  Google Scholar 

  • Ronsin O, Perrin B (1998) Dynamics of quasistatic directional crack growth. Phys Rev E 58(6): 7878–7886

    Article  CAS  ADS  Google Scholar 

  • Sasa S, Sekimoto K, Nakanishi H (1994) Oscillatory instability of crack propagations in quasistatic fracture. Phys Rev E 50(3): 1733–1736

    Article  ADS  Google Scholar 

  • Yang B, Ravi-Chandar K (2001) Crack path instabilities in a quenched glass plate. J Mech Phys Solids 49(1): 91–130

    Article  MATH  ADS  Google Scholar 

  • Yoneyama S, Sakaue K, Kikuta H, Takashi M (2008) Observation of stress field around an oscillating crack tip in a quenched thin glass plate. Exp Mech 48(3): 367–374

    Article  Google Scholar 

  • Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plates. Nature 362: 329–331

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Menouillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menouillard, T., Belytschko, T. Analysis and computations of oscillating crack propagation in a heated strip. Int J Fract 167, 57–70 (2011). https://doi.org/10.1007/s10704-010-9519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9519-0

Keywords

Navigation