Skip to main content
Log in

An XFEM/Spectral element method for dynamic crack propagation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A high-order extended finite element method based on the spectral element method for the simulation of dynamic fracture is developed. The partition of unity for the discontinuous displacement is constructed by employing p order spectral element. This method shows great advantages in the simulations of moving crack and mixed mode crack. The numerical oscillations are effectively suppressed and the accuracy of computed stress intensity factors and crack path are improved markedly. Furthermore the simulation results show that p-refinement is more effective in improving the stress contour near the crack tip than h-refinement. The well known form of the explicit central difference method is used and the critical time step for this method is investigated. We find that by using lumped mass matrix the critical time step Δt c for this high-order extended finite element is almost independent of the crack position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Areias P, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Meth Eng 63: 760–788

    Article  Google Scholar 

  • Attigui M, Petit C (1997) Mixed-mode separation in dynamic fracture mechanics: new path independent integrals. Int J Fract 84: 19–36

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45: 601–620

    Article  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Meth Eng 58: 1873–1905

    Article  Google Scholar 

  • Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    Google Scholar 

  • Böhme W, Kalthoff J (1982) The behavior of notched bend specimens in impact testing. Int J Fract 20: 139–143

    Article  Google Scholar 

  • Capdeville Y, Chaljub E, Vilotte J, Montagner J (2003) Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models. Geophys J Int 152: 34–67

    Article  Google Scholar 

  • Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Meth Eng 57: 1015–1038

    Article  Google Scholar 

  • Duan Q, Song J, Menouillard T, Belytschko T (2009) Element-local level set method for three-dimensional dynamic crack growth. Int J Numer Meth Eng 80: 1520–1543

    Article  Google Scholar 

  • Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput Meth Appl Mech Eng 198: 2297–2317

    Article  Google Scholar 

  • Fish J, Belytschko T (1990) A finite element with a unidirectionally enriched strain field for localization analysis. Comput Meth Appl Mech Eng 78: 181–200

    Article  Google Scholar 

  • Fleming M, Chu Y, Moran B, Belytschko T, Lu Y, Gu L (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Meth Eng 40: 1483–1504

    Article  Google Scholar 

  • Freund L (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freund L, Douglas A (1982) The influence of inertia on elastic-plastic antiplane-shear crack growth. J Mech Phys Solids 30: 59–74

    Article  Google Scholar 

  • Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Meth Appl Mech Eng 193: 3523–3540

    Article  Google Scholar 

  • Kalthoff J (1985) On the measurement of dynamic fracture toughnesses-areview of recent work. Int J Fract 27: 277–298

    Article  Google Scholar 

  • Karniadakis G, Sherwin S (1999) Spectral/hp element methods for CFD. Oxford University Press, USA

    Google Scholar 

  • Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139: 806–822

    Article  Google Scholar 

  • Komatitsch D, Vilotte J (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88: 368–392

    Google Scholar 

  • Krysl P, Belytschko T (1999) The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Meth Eng 44: 767–800

    Article  Google Scholar 

  • Lee Y, Freund L. (1990) Fracture initiation due to asymmetric impact loading of an edge cracked plate. J Appl Mech 57: 104–111

    Article  Google Scholar 

  • Legay A, Wang H, Belytschko T (2005) Strong and weak arbitrary discontinuities in spectral finite elements. Int J Numer Meth Eng 64: 991–1008

    Article  Google Scholar 

  • Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Meth Appl Mech Eng 139: 289–314

    Article  Google Scholar 

  • Menouillard T, Belytschko T (2009) Correction Force for releasing crack tip element with XFEM and only discontinuous enrichment. Eur J Comput Mech 18: 465–483

    Google Scholar 

  • Menouillard T, Belytschko T (2010) Dynamic fracture with meshfree enriched XFEM. Acta Mech 213: 53–69

    Article  Google Scholar 

  • Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the extended finite element method (X-FEM). Int J Numer Meth Eng 68: 911–939

    Article  Google Scholar 

  • Menouillard T, Réthoré J, Moës N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Meth Eng 74: 447–474

    Article  Google Scholar 

  • Menouillard T, Song J, Duan Q, Belytschko T (2010) Time dependent crack tip enrichment for dynamic crack propagation. Int J Fract 162: 33–49

    Article  Google Scholar 

  • Mercerat E, Vilotte J, Sanchez-Sesma F (2006) Triangular spectral element simulation of two-dimensional elastic wave propagation using unstructured triangular grids. Geophys J Int 166: 679–698

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46: 131–150

    Article  Google Scholar 

  • Padovani E, Priolo E, Seriani G (1994) Low-and high-order finite element method: experience in seismic modeling. J Comput Acoust 2: 371–422

    Article  Google Scholar 

  • Patera A (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54: 468–488

    Article  Google Scholar 

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Amsterdam

    Google Scholar 

  • Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Numer Meth Eng 63: 631–659

    Article  Google Scholar 

  • Rice J (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35: 379–386

    Google Scholar 

  • Rosakis A, Freund L (1982) Optical measurement of the plastic strain concentration at a crack tip in a ductile steel plate. J Eng Mater Technol 104: 115

    Article  Google Scholar 

  • Seriani G, Oliveira S (2007) Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45: 729–744

    Article  Google Scholar 

  • Song J, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67: 863–893

    Article  Google Scholar 

  • Song J, Belytschko T (2009) Dynamic fracture of shells subjected to impulsive loads. J Appl Mech 76: 051301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Belytschko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.L., Menouillard, T. & Belytschko, T. An XFEM/Spectral element method for dynamic crack propagation. Int J Fract 169, 183–198 (2011). https://doi.org/10.1007/s10704-011-9593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9593-y

Keywords

Navigation