Skip to main content
Log in

Simulation of dynamic fracture with the Material Point Method using a mixed J-integral and cohesive law approach

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new approach to simulating fracture, in which toughness is partitioned between the crack tip and, optionally, a process zone, is applied to dynamic fracture processes. In this approach, classical fracture mechanics determines crack tip propagation, and cohesive laws characterize process zone response and determine crack root and process zone propagation. The approach is implemented in the Material Point Method, a particle method in which the fracture path is unconstrained by a body-fitted mesh. The approach is found suitable for modeling a range of dynamic fracture processes, from brittle fracture to fracture with crack bridging. A variety of ways of partitioning toughness are explored with the aim of distinguishing model parameters via experimental measurements, particularly R curves. While no unique relationship exists, R curves, or effective R curves, on a suite of materials would provide substantial insight into model parameters. Advantages to the approach are identified, both in versatility and in regards to practical matters associated with implementing numerical fracture algorithms. It is found to perform well in dynamic fracture scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu Al-Rub RK, Kim S-M (2010) Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Eng Fract Mech 77: 1577–1603

    Article  Google Scholar 

  • Arias I, Knap J, Chalivendra V, Hong S, Ortiz M, Rosakis A (2007) Numerical modelling and experimental validation of dynamic fracture events along weak planes. Comput Methods Appl Mech Eng 196(37–40): 3833–3840

    Article  Google Scholar 

  • Atluri S, Zhu T (2000) New concepts in meshless methods. Int J Numer Methods Eng 47(1–3): 537–556

    Article  Google Scholar 

  • Babuska I, Melenk J (1997) The partition of unity method. Int J Numer Methods Eng 40(4): 727–758

    Article  Google Scholar 

  • Bardenhagen S, Kober E (2004) The generalized interpolation Material Point Method. Comput Model Eng Sci 5(6): 477–496

    Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4): 3–47

    Article  Google Scholar 

  • Bentur A, Mindess S (2006) Fibre reinforced cementitious composites Spons Architecture Price Book

  • Blackman B, Hadavinia H, Kinloch A, Williams J (2003) The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int J Fract 119(1): 25–46

    Article  Google Scholar 

  • Borst R, Remmers J, Needleman A (2006) Mesh-independent discrete numerical representations of cohesive-zone models. Eng Fract Mech 73(2): 160–177

    Article  Google Scholar 

  • Brackbill J, Kothe D, Ruppel H (1988) FLIP: a low-dissipation, particle-in-cell method for fluid flow. Comput Phys Commun 48(1): 25–38

    Article  CAS  Google Scholar 

  • Burgess D, Sulsky D, Brackbill J (1992) Mass matrix formulation of the FLIP particle-in-cell method. J Comput Phys 103(1): 1–15

    Article  Google Scholar 

  • Chen L, Zhang YY (2010) Dynamic fracture analysis using discrete cohesive crack method. Int J Numer Method Biomed Eng 26(11): 1493–1502. doi:10.1002/cnm.1232

    Article  Google Scholar 

  • Damjanac B, Detournay E (1995) Numerical modeling of normal wedge indentation in rocks. In: 35th US Symposium on Rock Mechanics. AA Balkema, Rotterdam, Netherlands, pp 349–354

  • Daphalapurkar N, Lu H, Coker D, Komanduri R (2007) Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method. Int J Fract 143(1): 79–102

    Article  Google Scholar 

  • Demkowicz L, Oden J (1986) An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable. J Comput Phys 67(1): 188–213

    Article  Google Scholar 

  • Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2): 100–104

    Article  Google Scholar 

  • Graham-Brady L (2010) Statistical characterization of meso-scale uniaxial compressive strength in brittle materials with randomly occurring flaws. Int J Solids Struct 47: 2398–2413

    Article  Google Scholar 

  • Guo Y, Nairn J (2004) Calculation of J-integral and stress intensity factors using the Material Point Method. Comput Model Eng Sci 6: 295–308

    Google Scholar 

  • Guo Y, Nairn J (2006) Three-dimensional dynamic fracture analysis using the Material Point Method. Comput Model Eng Sci 16(3): 141

    Google Scholar 

  • Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2): 229–244

    Article  Google Scholar 

  • Harlow F (1964) The particle-in-cell computing method for fluid dynamics. Methods Comput Phys 3: 319–343

    Google Scholar 

  • Huang H, Detournay E, Bellier B (1999) Discrete element modelling of rock cutting

  • Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge

    Google Scholar 

  • Khoei A, Moslemi H, Majd Ardakany K, Barani O, Azadi H (2009) Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique. Int J Fract 159(1): 21–41

    Article  Google Scholar 

  • Li L, Liu S, Wang H (2011) A meshless method for ductile fracture. Int J Numer Method Biomed Eng 27(2): 251–261

    Article  Google Scholar 

  • Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1): 1–34

    Article  Google Scholar 

  • Liu C, Stout M, Asay B (2000) Stress bridging in a heterogeneous material. Eng Fract Mech 67(1): 1–20

    Article  Google Scholar 

  • Matsumoto N, Nairn J (2009) The fracture toughness of medium density fiberboard (MDF) including the effects of fiber bridging and crack-plane interference. Eng Fract Mech 76(18): 2748–2757

    Article  Google Scholar 

  • Matsumoto N, Nairn J (2010) Fracture toughness of wood and wood composites during crack propagation. Wood Fiber sci (submitted)

  • Nairn J (2009) Analytical and numerical modeling of R curves for cracks with bridging zones. Int J Fract 155(2): 167–181

    Article  Google Scholar 

  • Needleman A (1999) An analysis of intersonic crack growth under shear loading. J Appl Mech 66: 847

    Article  CAS  Google Scholar 

  • Nishioka T (1997) Computational dynamic fracture mechanics. Int J Fract 86(1): 127–159

    Article  Google Scholar 

  • Nishioka T, Atluri S (1983) Path-independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics. Eng Fract Mech 18(1): 1–22

    Article  Google Scholar 

  • Nistor I, PantalÈ O, Caperaa S (2008) Numerical implementation of the eXtended Finite Element Method for dynamic crack analysis. Adv Eng softw 39(7): 573–587

    Article  Google Scholar 

  • Pandolfi A, Ortiz M (2002) An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comput 18(2): 148–159

    Article  Google Scholar 

  • Rosakis A, Samudrala O, Coker D (1999) Cracks faster than the shear wave speed. Science 284(5418): 1337

    Article  CAS  Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1): 175–209. doi:10.1016/s0022-5096(99)00029-0

    Article  Google Scholar 

  • Sulsky D, Chen Z, Schreyer H (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2): 179–196

    Article  Google Scholar 

  • Sulsky D, Zhou S, Schreyer H (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2): 236–252

    Article  CAS  Google Scholar 

  • Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott G. Bardenhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardenhagen, S.G., Nairn, J.A. & Lu, H. Simulation of dynamic fracture with the Material Point Method using a mixed J-integral and cohesive law approach. Int J Fract 170, 49–66 (2011). https://doi.org/10.1007/s10704-011-9602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9602-1

Keywords

Navigation