Skip to main content
Log in

Identification algorithm for fracture parameters by combining DIC and FEM approaches

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This research program focuses on a hybrid experimental and numerical approach to identifying the mechanical state in the vicinity of a crack. The digital image correlation, as corrected by interpolating a theoretical displacement field, enables determining the crack opening intensity factors representative of the kinematic state of crack lips. A finite element model is introduced for calculating stress intensity factors. The parallelism derived from the DIC method and FEM approach is presented by means of a specific identification algorithm that allows computing the energy release rate within a common finite element mesh. This algorithm is then illustrated by testing the opening-mode configuration for a PVC sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69: 1695–1711

    Article  Google Scholar 

  • Atluri SN, Kobayashi AS (1993) Mechanical response of materials. In: Handbook on experimental mechanics. Prentice-Hall, Englewood cliffs, pp 1–37

  • Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng 10: 25–37

    Article  Google Scholar 

  • Begley JA, Landes JD (1972) The J Integral as a fracture criterion, fracture toughness. In: Proceeding of the 1971 national symposium on fracture mechanics, part II, ASTM STP 514, American Socity for Testing and Materials, pp 1–20

  • Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46: 789–804

    Article  Google Scholar 

  • Breque C, Brémand F, Gayet LG (2001) Local strain measurement by tracking method for biomechanical tissues. Arch Physiol Biochem 109: 1–144

    Article  Google Scholar 

  • Bretagne N, Valle V, Dupré JC (2005) Development of the marks tracking technique for strain field and volume variation measurements. NDT&E Int 38(4): 290–298

    Article  Google Scholar 

  • Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Exp Mech 29(3): 261–267

    Article  Google Scholar 

  • Bui HD (1978) Some mechanical aspects of the fracture problems, Matériaux et structures sous chargement cyclique, Palaiseau 28 et 29 september, pp 117–131

  • Debruyene G (2000) Proposition d’un paramètre énergétique de rupture pour les matériaux dissipatifs. C. R. Acad Sci Paris 328: 785–791

    Google Scholar 

  • Destuynder PH, Djaoua M, Lescure S (1983) Quelques remarques sur la mécanique de la rupture élastique. J de Mécanique Théorique et Appliquée 2: 113–135

    Google Scholar 

  • Dubois F (1997) Modélisation du comportement mécanique des milieux viscoélastiques fissurés: Application au matériau bois, Thèse de doctorat de l’Université de Limoges

  • Dubois F, Chazal C, Petit C (2002) Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture. Int J Fract 113: 367–388

    Article  Google Scholar 

  • Dubois F, Petit C (2005) Modelling of the crack growth initiation in viscoelastic media by the G θ integral. Eng Fract Mech 72: 2821–2836

    Article  Google Scholar 

  • Eshelby JD (1968) Stress analysis: elasticity and fracture mechanics. ISI Publ. 121: 13–48

    Google Scholar 

  • Fedele R, Raka B, Hild F, Roux S (2009) Identification of adhesive properties in GLARE assemblies using digital image correlation. J Mech Phys Solids 57: 1003–1016

    Article  CAS  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics, Cambridge monographs on mechanics and applied mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Henshell RD, Shaw KG (1975) Crack tip elements are unnecessary. Int J Numer Methods Eng 9: 495–507

    Article  Google Scholar 

  • Hild F, Roux S (2006) Measuring stress intensity factors with a camera: integrated digital image correlation (I-DIC). Comptes Rendus Mécanique 334(1): 8–12

    Article  Google Scholar 

  • Huntley JM, Field JE (1989) Measurement of crack tip displacement field using laser speckle photography. Eng Fract Mech 30: 779–790

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of crack traversing a plate. J Appl Mech 24: 361–364

    Google Scholar 

  • Ju SH, Liu SH, Liu KW (2006) Measurement of stress intensity factor by digital camera. Int J Solids Struc 43: 1009–1022

    Article  Google Scholar 

  • Landes JD, Begley JA (1972) The Effect of specimen geometry on JIc, fracture toughness. In: Proceeding of the 1971 national symposium on fracture mechanics, part II, ASTM STP 514. American society for testing and materials, pp 24–39

  • Lee RS, Hsu QC (1994) Image-processing system for circular-grid analysis in sheet-metal forming. Exp Mech 34(2): 108–115

    Article  Google Scholar 

  • Machida K, Suzuki Y,. (2006) Examination of the accuracy of the singular stress field near a crack-tip by digital image correlation. Key Eng Mater 321–323, 32–37

  • Mc Neil S, Peters W, Sutton M (1987) Estimation of stress intensity factors by digital image correlation. Eng Frac Mech 28(1): 101–112

    Article  Google Scholar 

  • Muskhelishvili NI, (1933) Some basic problem of mathematical theory of elasticity, English translation Noordhoff

  • Nishioka T, Kurio K, Nakabayashi H (2000) An intelligent hybrid method to automatically detect and eliminate experimental measurement errors for linear elastic deformation fields. Exp Mech 40(2): 170–179

    Article  Google Scholar 

  • Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Frac 10: 487–502

    Article  Google Scholar 

  • Parks DM (1977) The virtual crack extension method for nonlinear material behavior. Comput Methods Appl Mech Eng 12(3): 353–364

    Article  Google Scholar 

  • Peters WH, Ranson WF (1982) Digital image techniques in experimental stress analysis. Opt Eng 21(3): 427–431

    Google Scholar 

  • Rajaram H, Socrate S, Parks DM (2000) Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors. Eng Frac Mech 66: 455–482

    Article  Google Scholar 

  • Ramesh K, Gupta S, Kelkar AA (1997) Evaluation of stress fields parameters in fracture mechanics by photoelasticity-revisited. Eng Fract Mech 56(1): 25–45

    Article  Google Scholar 

  • Réthoré J, Gravouil A, Morestin F, Combescure A (2005) Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral. Int J Fract 132: 65–79. doi:10.1007/s10704-004-8141-4

    Article  Google Scholar 

  • Réthoré J, Roux S, Hild F (2008) Noise-robust stress intensity factor determination from kinematic field measurements. Eng Fract Mech (75):3763–3781

  • Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to analysis fractured samples. Eur J Comput Mech 18: 285–306

    Google Scholar 

  • Réthoré J, Roux S, Hild F (2010) Mixed-mode crack propagation using a hybrid analytical and extended finite element method. Comptes Rendus Mécanique 338(3): 121–126

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech Trans ASME 35: 379–386

    Google Scholar 

  • Rotinat R, Tié Bi R, Valle V, Dupré JC (2001) Two optical procedures for local large-strain measurement. Strain 37(3): 89–98

    Article  Google Scholar 

  • Roux S, Hild F (2006) Stress intensity factor measurement from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1–4): 141–157

    Article  Google Scholar 

  • Suo XS, Combescure A (1992) On the application of the G θ method and its comparison with de Lorenzi’s approach. Nucl Eng Des 135: 207–224

    Article  Google Scholar 

  • Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeil SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3): 133–139

    Article  Google Scholar 

  • Sutton MA, Cheng MQ, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3): 143–151

    Article  Google Scholar 

  • Sutton MA, Turner JL, Bruck HA, Chae TA (1991) Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Exp Mech 31(2): 168–177

    Article  Google Scholar 

  • Sutton MA, McNell S, Helm J, Chao Y (2000) Advances in two-dimensional and three-dimensional computer vision, photomechanics. Springer, Berlin, pp 323–372

    Google Scholar 

  • Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu JJ (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46(10): 746–757

    Article  Google Scholar 

  • Westergaard HM (1939) Bearing pressure and cracks. J Appl Mech 61: A49–A53

    Google Scholar 

  • Williams M (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24: 109–114

    Google Scholar 

  • Yoneyama S, Morimoto Y, Takashi M (2003) Automatic determination method of stress intensity utilizing digital image correlation and nonlinear least squares. In: Wu Z, Abe M (eds) Structural health monitoring and intelligent infrastructure. Swet & Zeitlinger, Amsterdam, pp 1357–1424

    Google Scholar 

  • Yoneyama S, Morimoto Y, Takashi M (2006) Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain 42: 21–29

    Article  Google Scholar 

  • Yoneyama S, Ogawa T, Kobayashi Y (2007) Evaluating mixed-mode stress intensity factors from full-field displacement obtained by optical methods. Eng Fract Mech 74: 1399–1412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, O., Meite, M., Dubois, F. et al. Identification algorithm for fracture parameters by combining DIC and FEM approaches. Int J Fract 170, 101–114 (2011). https://doi.org/10.1007/s10704-011-9605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9605-y

Keywords

Navigation