Skip to main content

Advertisement

Log in

A coupled quantum/continuum mechanics study of graphene fracture

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new technique is presented to study fracture in nanomaterials by coupling quantum mechanics (QM) and continuum mechanics (CM). A key new feature of this method is that broken bonds are identified by a sharp decrease in electron density at the bond midpoint in the QM model. As fracture occurs, the crack tip position and crack path are updated from the broken bonds in the QM model. At each step in the simulation, the QM model is centered on the crack tip to adaptively follow the path. This adaptivity makes it possible to trace paths with complicated geometries. The method is applied to study the propagation of cracks in graphene which are initially perpendicular to zigzag and armchair edges. The simulations demonstrate that the growth of zigzag cracks is self-similar whereas armchair cracks advance in an irregular manner. The critical stress intensity factors for graphene were found to be 4.21 MPa\({\sqrt {\rm m}}\) for zigzag cracks and 3.71 MPa\({\sqrt{\rm m}}\) for armchair cracks, which is about 10% of that for steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the length scales in dynamic simulation. Comput Phys 12(6): 538–546

    Article  CAS  Google Scholar 

  • Bader RFW, Anderson SG, Duke AJ (1979) Quantum topology of molecular charge distributions. 1. J Am Chem Soc 101: 1389–1395

    Article  CAS  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8: 902–907

    Article  CAS  Google Scholar 

  • Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17:043,001

    Google Scholar 

  • Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65: 235–430

    Article  Google Scholar 

  • Bolotin K, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10): 351–355

    Article  CAS  Google Scholar 

  • Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60(4): 2391–2403

    Article  CAS  Google Scholar 

  • Buogiorno Nardelli M, Fattebert JL, Orlikowski D, Roland C, Zhao Q, Bernholc J (2000) Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38: 1703–1711

    Article  Google Scholar 

  • Dumitrică T, Belytschko T, Yakobson BI (2003) Bond-breaking bifurcation states in carbon nanotube fracture. J Chem Phys 118: 9485

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6: 183–191

    Article  CAS  Google Scholar 

  • Gracie R, Belytschko T (2008) Concurrently coupled atomistic and XFEM models for dislocations and cracks. Int J Numer Methods Eng 78(3): 354–378

    Article  Google Scholar 

  • Jun S (2008) Density-functional study of edge stress in graphene. Phys Rev B 78(7): 073–405

    Article  Google Scholar 

  • Khare R, Mielke SL, Paci JT, Zhang SL, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75(7): 075–412

    Article  Google Scholar 

  • Khare R, Mielke SL, Schatz GC, Belytschko T (2008) Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield,and continuum regimes. Comput Methods Appl Mech Eng 197: 3190–3202

    Article  Google Scholar 

  • Kohlhoff S, Gumbsch P, Fischmeister HF (1991) Crack propagation in bcc crystals studied with a combined finite-element and atomistic model. Philos Mag A 64(4): 851–878

    Article  Google Scholar 

  • Langreth DC, Perdew JP (1980) Theory of nonuniform electronic systems. i. analysis of the gradient approximation and a generalization that works. Phys Rev B 21: 5469–5493

    Article  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385–388

    Article  CAS  Google Scholar 

  • Li D, Kaner RB (2008) Graphene-based materials. Nat Nanotechnol 3: 101

    Article  CAS  Google Scholar 

  • Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176: 250–254

    Article  Google Scholar 

  • Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  Google Scholar 

  • Mullins M, Dokainish MA (1982) Simulation of the (001) plane crack in α-iron employing a new boundary scheme. Philos Mag A 46(5): 771–787

    Article  CAS  Google Scholar 

  • Neto A, Guinea F, Peres N, Novoselov K, Geim A (2009) The electronic properties of graphene. Rev Mod Phys 81: 109–162

    Article  Google Scholar 

  • Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. PNAS 102: 10,451–10,453

    Article  CAS  Google Scholar 

  • Omeltchenko A, Yu J, Kalia RK, Vashishta P (1997) Crack front propagation and fracture in a graphite sheet: a molecular dynamics study on parallel computers. Phys Rev Lett 78(11): 2148–2151

    Article  Google Scholar 

  • Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53(16): 10,441–10,444

    Article  Google Scholar 

  • Oswald J, Gracie R, Khare R, Belytschko T (2009) An extended finite element method for dislocations in complex geometries: thin films and nanotubes. Comput Methods Appl Mech Eng 198(21–26): 1872–1886

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18): 3866–3868

    Article  Google Scholar 

  • Ritchie RO, Francis B, Server WL (1976) Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures. Metal Mater Trans A 7(6): 831–838

    Article  Google Scholar 

  • Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Mat 14: 2745–2779

    Article  CAS  Google Scholar 

  • Stankovich SS, Dikin DA, Dommett GMKK, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442: 282–286

    Article  CAS  Google Scholar 

  • Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)(3))(2)+H-2 oxidative addition. J Phys Chem 100: 19,357–19,363

    Article  CAS  Google Scholar 

  • Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6): 1529–1563

    Article  Google Scholar 

  • Troya D, Mielke SL, Schatz GC (2003) Carbon nanotube fracture–differences between quantum mechanical mechanisms and those of empirical potentials. Chem Phys Lett 382(1–2): 133–141

    Article  CAS  Google Scholar 

  • Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 80(20): 205–407

    Article  Google Scholar 

  • Xiao JR, Staniszewski J, Gillespie JW Jr (2009) Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct 88: 602–609

    Article  Google Scholar 

  • Xu M, Paci JT, Belytschko T (2011) A constitutive equation for graphene based on density functional theory. Int J Solids Struct (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Paci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Tabarraei, A., Paci, J.T. et al. A coupled quantum/continuum mechanics study of graphene fracture. Int J Fract 173, 163–173 (2012). https://doi.org/10.1007/s10704-011-9675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9675-x

Keywords

Navigation