Skip to main content
Log in

Crack propagation in elastic solids using the truss-like discrete element method

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The crack propagation simulation is still an open problem in the mechanical simulation field. In the present work this problem is analyzed using a version of truss-like Discrete Element Method, that here we called DEM. This method has been used with success in several applications in solid mechanical problems where the simulation of fracture and fragmentation is relevant. The formulation of DEM explaining the way the process of rupture could be simulated in consistent form is showed. Also are described details about how the dynamical fracto-mechanical stress intensity factors are computed. The main aim of this paper is to show the ability of this method in simulating fracture and crack propagation in solids, for this, three examples with different levels of complexity are analyzed. The obtained results are presented in terms of the variation of dynamic stress intensity factor in the fracture process, the stress map and geometric configuration on different steps in the simulation of the fracture process, the crack speed and the energetic balance during all the process. These results are compared with experimental and numerical results obtained by other researchers and published in recognized scientific papers. Final commentaries about the performance of the version of lattice model considered are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham FF, Brodbeck D, Rudge WE, Xu X (1997) A molecular dynamics investigation of rapid fracture mecahnics. J Mech Phys Solids 45: 1595–1619

    Article  CAS  Google Scholar 

  • Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J Fract 171(1): 65–78

    Article  Google Scholar 

  • Aliabadi MH, Rooke DP (1991) Numerical fracture mechanics. Computacional Mechanics Publicactions and Kluwer, Southampton

    Book  Google Scholar 

  • Aliabadi MH, Saleh AL (2002) Fracture mechanics analysis of cracking in plain and reinforced concrete using the boundary element method. Eng Fract Mech 69: 267–280

    Article  Google Scholar 

  • Anderson TL (2005) Fracture mechanics. fundamentals and applications. CRC Press, Boca Ratón

    Google Scholar 

  • Barrios D’Ambra RL, Iturrioz I, Coceres H, Kosteski L, Tech TW, Cisilino A (2007) Cálculo del factor de intensidad de tensiones utilizando el método de los elementos discretos. Revista Sul-Americana de Engenharia Estrutural 4: 7–20

    Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  • Batra RC, Ching HK (2002) Analysis of elastodynamic deformations near a crack/notch tip by the Meshless Local Petrov-Galerkin (MLPG) method. Comput Model Eng Sci 3: 717–730

    Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51: 295–315

    Article  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58: 1873–1905

    Article  Google Scholar 

  • Brara A, Camborde F, Klepaczko JR, Mariotti C (2001) Experimental and numerical study of concrete at high strain rates in tension. Mech Mater 33: 33–45

    Article  Google Scholar 

  • Chiaia B, Vervuurt A, Van Mier JG (1997) Lattice model evaluation of progressive failure in disordered particle composites. Eng Fract Mech 57(2/3): 301–318

    Article  Google Scholar 

  • Cundall PA, Hart RD (1989) Numerical modelling of discontinua. Proc 1st US Conf Discrete Element Methods (Golden, CO), pp 1–17

  • Dalguer LA, Irikura K, Riera JD, Chiu HC (2001) The importance of the dynamic source effects on strong ground motion during the 1999 Chi-Chi, Taiwan, earthquake: brief interpretation of the damage distribution on buildings. Bull Seismol Soc Am 91/5: 1112–1127

    Google Scholar 

  • Das BM (1982) Principles of soil dynamics. El Paso, Texas

    Google Scholar 

  • Falk ML, Needleman A, Rice JR (2001) A critical evaluation of dynamic fracture simulations using cohesive surfaces. J Phys IV 11: 43–52

    Article  Google Scholar 

  • Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Furuya Y, Noguchi H (1998) A combined method of molecular dynamics with micromechanics improved by moving the molecular dynamics region successively in the simulation of elastic–plastic crack propagation. Int J Fract 94: 17–31

    Article  CAS  Google Scholar 

  • Gao H (1996) A theory of local limiting speed in dynamic fracture. J Mech Phys Solids 44: 1453–1474

    Article  CAS  Google Scholar 

  • Guo YJ, Nairn JA (2004) Calculation of J-integral and stress intensity factors using the material point method. Comput Model Eng Sci 6: 295–308

    Google Scholar 

  • Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6): 1156–1168

    Article  Google Scholar 

  • Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1): 229–244

    Article  Google Scholar 

  • Huespe AE, Oliver J, Sanchez PJ, Blanco S, Sonzogni V (2006) Strong discontinuity approach in dynamic fracture simulations. Mecánica Computacional 24: 1997–2018

    Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24: 361–364

    Google Scholar 

  • Iturrioz I, Miguel LFF, Riera JD (2009) Dynamic fracture analysis of concrete or rock plates by means of the discrete element method. Lat Am J Solids Struct 6: 229–245

    Google Scholar 

  • Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1: 185–195

    Google Scholar 

  • Kosteski L, Barrios R, Iturrioz I. (2008) Determinación de parámetros fractomecánicos estáticos y dinámicos utilizando el método de los elementos discretos compuestos por barras. Revista Internacional Métodos numéricos para cálculo y diseño en ingeniería, Cimne 24: 323–343

    Google Scholar 

  • Kosteski L, Barrios R, Iturrioz I. (2009) Fractomechanics parameter calculus using the discrete element method with bars. Lat Am J Solids Struct 6: 301–321

    Google Scholar 

  • Kosteski L, Iturrioz I, Batista RG, Cisilino AP (2011) The truss-like discrete element method in fracture and damage mechanics. Eng Comput 28: 6–765787

    Google Scholar 

  • Kupfer HB, Gerstle KH (1973) Behaviour of concrete under biaxial stresses. J Eng Mech Div Am Soc Civ Eng 99: 853–866

    Google Scholar 

  • Miguel LFF, Riera JD, Iturrioz I (2008) Influence of size on the constitutive equations of concrete or rock dowels. Int J Numer Anal Methods Geomech 32/15: 1857–1881

    Article  Google Scholar 

  • Miguel LFF, Iturrioz I, Riera JD (2010) Size effects and mesh independence in dynamic fracture analysis of brittle materials. Comput Methods Model Eng Sci 56: 1–16

    Google Scholar 

  • Munjiza A, Bangash T, John NWM (2004) The combined finite-discrete element method for structura failure and collapse. Eng Fract Mech 71: 469–483

    Article  Google Scholar 

  • Munjiza A (2009) Special issue on the discrete element method: aspects of recent developments in computational mechanics of discontinua. Eng Comput 26(6) http://www.emeraldinsight.com/journals.htm?articleid=1806113&show=html

  • Murphy N, Ali M, Ivankovic A (2006) Dynamic crack bifurcation in PMMA. Eng Fract Mech 73: 2569–2587

    Article  Google Scholar 

  • Nayfeh AH, Hefzy MS (1978) Continuum modeling of three-dimensional truss-like space structures. AIAA J 16/8: 779–787

    Article  Google Scholar 

  • Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525–531

    Article  Google Scholar 

  • Nishioka T (1998) On the dynamic J Integral in dynamic fracture mechanics. In: Cherepanov GP (eds) FRACTURE: a topical encyclopedia of current knowledge dedicated to alan arnold grith. Krieger Publishing Company, Malabar, pp 575– 617

    Google Scholar 

  • Oliver J, Huespe AE, Pulido MGD, Chaves E (2001) From continuum mechanics to fracture mechanics: the strong discontinuity approach. Eng Fract Mech 69: 113–136

    Article  Google Scholar 

  • Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13): 2316–2343

    Article  Google Scholar 

  • Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29-30): 2777–2799

    Article  Google Scholar 

  • Rabczuk T, Bordas S, Zi G (2007) A three-dimensional meshfree method for continuous multiplecrack initiation, nucleation and propagation in statics and dynamics. Comput Mech 40(3): 473–495

    Article  Google Scholar 

  • Rabczuk T, Song JH, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng Fract Mech 76: 730–741

    Article  Google Scholar 

  • Rashid MM (1998) The arbitrary local mesh replacement method: an alternative to remeshing for crack propagation analysis. Comput Methods Appl Mech Eng 154: 133–150

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture—I. Crack initiation and crack arrest. Int J Fract 25: 247–262

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture – II. Microstructural aspects. Int J Fract 26: 65–80

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture – III. Steady state crack propagation and crack branching. Int J Fract 26: 141–154

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture – IV. On the interaction of stress waves with propagating cracks. Int J Fract 26: 189–200

    Article  Google Scholar 

  • Remmers JJC, Borst R, Needleman A (2008) The simulation of dynamic crack propagation using the cohesive segments method. J Mech Phys Solids 56: 70–92

    Article  Google Scholar 

  • Riera JD (1984) Local effects in impact problems on concrete structures. In: Proceedings, conference on structural analysis and design of nuclear power plants, vol 3. Porto Alegre, RS, Brasil, CDU 264.04:621.311.2:621.039

  • Riera JD, Iturrioz I (1995) Discrete element dynamic response of elastoplastic shells subjected to impulsive loading. Commun Numer Methods Eng 11: 417–426

    Article  Google Scholar 

  • Riera JD, Iturrioz I (1998) Discrete element model for evaluating impact and impulsive response of reinforced concrete plates and shells subjected to impulsive loading. Nucl Eng Des 179: 135–144

    Article  CAS  Google Scholar 

  • Riera JD, Rocha MM (1991) A note on the velocity of crack propagation in tensile fracture. Revista Brasileira de Ciencias Mecânicas 12/3: 217–240

    Google Scholar 

  • Rinaldi A, Lai YC (2007) Statistical damage theory of 2D lattices: Energetics and physical foundations of damage parameter. Int J Plast 23: 1769–1825

    Article  Google Scholar 

  • Rinaldi A, Krajcinovic D, Peralta P, Lai YC (2008) Lattice models of polycrystalline microstructures: A quantitative approach. Mech Mater 40: 17–36

    Article  Google Scholar 

  • Rios RD, Riera JD (2004) Size effects in the analysis of reinforced concrete structures. Eng Struct 26: 1115–1125

    Article  Google Scholar 

  • Rocha MM, Riera JD, Krutzik NJ (1991) Extension of a model that aptly describes fracture of plain concrete to the impact analysis of reinforced concrete. In: International conference on structural mechanics reactor technology (SMIRT 11) Tokyo, Japan

  • Schnaid F, Spinelli L, Iturrioz I, Rocha M (2004) Fracture mechanics in ground improvement design. Ground Improv UK 8: 7–15

    Article  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: An inverse homogenization problem. Int J Solids Struct 31/17: 2313–2329

    Article  Google Scholar 

  • Tabiei A, Wu J (2003) Development of the DYNA3D simulation code with automated fracture procedure for brick elements. Int J Numer Methods Eng 57: 1979–2006

    Article  Google Scholar 

  • Williams ML (1957) On the stress distributions at the base of a stationary crack. J Appl Mech 24: 109–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Kosteski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosteski, L., Barrios D’Ambra, R. & Iturrioz, I. Crack propagation in elastic solids using the truss-like discrete element method. Int J Fract 174, 139–161 (2012). https://doi.org/10.1007/s10704-012-9684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9684-4

Keywords

Navigation