Skip to main content
Log in

A method for 3-D hydraulic fracturing simulation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We present a method for the simulation of 3-D hydraulic fracturing in fully saturated porous media. The discrete fracture(s) is driven by the fluid pressure. A cohesive fracture model is adopted where the fracture follows the face of the elements around the fracture tip which is closest to the normal direction of the maximum principal stress at the fracture tip. No predetermined fracture path is needed. This requires continuous updating of the mesh around the crack tip to take into account the evolving geometry. The updating of the mesh is obtained by means of an efficient mesh generator based on Delaunay tessellation. The governing equations are written in the framework of porous media mechanics theory and are solved numerically in a fully coupled manner. An examples dealing with a concrete dam is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Advani SH, Lee TS, Dean RH, Pak CK, Avasthi JM (1997) Consequences of fluid lag in three-dimensional hydraulic fractures. Int J Numer Anal Methods Geomech 21: 229–240

    Article  Google Scholar 

  • Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23: 622–636

    Article  Google Scholar 

  • Bolzon G, Corigliano A (2000) Finite elements with embedded displacement discontinuity: a generalized variable formulation. Int J Numer Methods Eng 49: 1227–1266

    Article  Google Scholar 

  • Boone TJ, Ingraffea AR (1990) A Numerical Procedure for Simulation of hydraulically driven fracture propagation in poroelastic media. Int J Numer Anal Methods Geomech 14: 27–47

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938

    Article  Google Scholar 

  • Campagna S, Karbacher S (2000) Polygon meshes. In: Girod B, Greiner G, Niemann N (eds) Principles of 3D image analysis and synthesis. Kluwer Academic Publisher, Boston, pp 142–

    Google Scholar 

  • Carter BJ, Desroches J, Ingraffea AR, Wawrzynek PA (2000) Simulating fully 3-D hydraulic fracturing. In: Wawrzynek PA, Wawrzynek PA, Wawrzynek PA (eds) Modeling in geomechanics.. Wiley, Chichester, pp 525–567

    Google Scholar 

  • Cleary MP (1978) Moving singularities in elasto-diffusive solids with applications to fracture propagation. Int J Solids Struct 14: 81–97

    Article  Google Scholar 

  • Detournay E, Cheng AH (1991) Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium. Int J Solids Struct 27: 1645–1662

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104

    Article  Google Scholar 

  • Feist C, Hofstetter G (2006) An embedded strong discontinuity model for cracking of plain concrete. Comput Methods Appl Mech Eng 195(52): 7115–7138

    Article  Google Scholar 

  • Garagash D, Detournay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech 67: 183–192

    Article  Google Scholar 

  • Guibas LJ, Stolfi J (1985) Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans Graph 4: 74–123

    Article  Google Scholar 

  • Gravouil A, Moes N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets-part II: level set update. Int J Numer Methods Eng 53: 2569–2586

    Article  Google Scholar 

  • Hilleborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concret Res 6: 773–782

    Article  Google Scholar 

  • Huang NC, Russel SG (1985a) Hydraulic fracturing of a saturated porous medium—I: general theory. Theor Appl Fract Mech 4: 201–213

    Article  Google Scholar 

  • Huang NC, Russel SG (1985b) Hydraulic fracturing of a saturated porous medium—II: special cases. Theor Appl Fract Mech 4: 215–222

    Article  Google Scholar 

  • ICOLD (1999) Fifth international benchmark workshop on numerical analysis of dams, Theme A2, Denver, Colorado

  • Lewis RW, Schrefler BA (1989) The finite element method in the static and dynamic deformation and consolidation in porous media. Wiley, Chichester

    Google Scholar 

  • Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7): 813–833

    Article  Google Scholar 

  • Moes N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets-Part I: mechanical model. Int J Numer Methods Eng 53: 2549–2568

    Article  Google Scholar 

  • Oliver J, Huespe AE, Pulido MDG, Chaves E (2001) From continuum mechanics to fracture mechanics: the strong discontinuity approach. Eng Fract Mech 69(2): 113–136

    Article  Google Scholar 

  • Oñate E, Owen R (2011) Particle-based methods. Springer, New York

    Book  Google Scholar 

  • Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method. An overview. Int J Comput Methods 1(2): 267–307

    Article  Google Scholar 

  • Perkins TK, Kern LR (1961) Widths of hydraulic fractures. SPE J 222: 937–949

    Google Scholar 

  • Réthoré J, de Borst R, Abellan MA (2008) A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Comput Mech 42: 227–238

    Article  Google Scholar 

  • Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14: 227–241

    Article  Google Scholar 

  • Schrefler BA, Secchi S, Simoni L (2006) On adaptive refinement techniques in multifield problems including cohesive fracture. CMAME 195: 444–461

    Google Scholar 

  • Secchi S, Simoni L (2003) An Improved Procedure for 2-D unstructured Delaunay mesh generation. Adv Eng Softw 34: 217–234

    Article  Google Scholar 

  • Secchi S, Simoni L, Schrefler BA (2007) Numerical procedure for discrete fracture propagation in porous materials. Int J Numer Anal Methods Geomech 31: 331–345

    Article  Google Scholar 

  • Secchi S, Simoni L, Schrefler BA (2008) Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media. Comput Mech 43: 179–189

    Article  Google Scholar 

  • Sukumar N, Chopp DL, Bechet E, Moes N (2008) Three dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Methods Eng 76: 727–748

    Article  Google Scholar 

  • TAMEST (2011) The Academy of Medicine, Engineering & Science of Texas, Texas Energy Summit, Executive Summary, Austin, Texas 78701

  • Turska E, Schrefler BA (1993) On convergence conditions of partitioned solution procedures for consolidation problems. Comput Methods Appl Mech Eng 106: 51–63

    Article  Google Scholar 

  • Wawrzynek PA, Ingraffea AR (1989) An interactive approach to local remeshing around a propagating crack. Finite Elem Anal Design 5(1): 87–96

    Article  Google Scholar 

  • Weiler K (1985) Edge-based data structures for solid modeling in curved surface environments. IEEE Comput Graph Appl 5(1): 21–40

    Article  Google Scholar 

  • Weiler K (1988) The radial-edge structure: a topological representation for non-manifold geometric boundary representation. In: Wozny MJ, McLaughlin HW, Encarnacao JL (eds) Geometric modeling for CAD applications. North Holland, New York, pp 3–36

    Google Scholar 

  • Wells GN, Sluys LJ (2001) Three-dimensional embedded discontinuity model for brittle fracture. Int J Solids Struct 38(5): 897–913

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of Cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16: 1016–1024

    Article  Google Scholar 

  • Zhu JZ, Zienkiewicz OC (1988) Adaptive techniques in the finite element method. Commun Appl Numer Methods 4: 197–204

    Article  Google Scholar 

  • Zienkiewicz OC, Chan A, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Schrefler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Secchi, S., Schrefler, B.A. A method for 3-D hydraulic fracturing simulation. Int J Fract 178, 245–258 (2012). https://doi.org/10.1007/s10704-012-9742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9742-y

Keywords

Navigation