Skip to main content
Log in

Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing

  • Originl Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An axisymmetric thermo-mechanical model is developed for laser-driven non-contact transfer printing, which involves laser-induced impulsive heating to initiate separation at the interface between a soft, elastomeric stamp and hard micro/nanomaterials (i.e., inks) on its surface, due to a large mismatch in coefficients of thermal expansion. The result is the active ejection of the inks from the stamp, to a spatially separated receiving substrate, thereby representing the printing step. The model gives analytically the temperature field, and also a scaling law for the energy release rate for delamination at the interface between the stamp and an ink in the form of a rigid plate. The normalized critical laser pulse time for interfacial delamination depends only on the normalized absorbed laser power and width of the ink structure, and has been verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Campbell SA (2001) The science and engineering of microelectronic fabrication. Oxford University Press, New York

    Google Scholar 

  • Crawford GP (2005) Flexible flat panel display technology. Wiley, New York

    Book  Google Scholar 

  • Dassault Systèmes (2009) ABAQUS Analysis User’s Manual V6.9. Pawtucket

  • Fettis HE, Caslin JC, Cramer KR (1973) Complex zeros of the error function and of the complementary error function. Math Comput 27: 401–407

    Article  Google Scholar 

  • Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428: 911–918

    Article  CAS  Google Scholar 

  • Gelinck GH, Huitema HEA, Van Veenendaal E et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3: 106–110

    Article  CAS  Google Scholar 

  • Incropera FP, DeWitt DP, Bergman TL et al (2007) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  • Kim DH, Ahn JH, Choi WM et al (2008) Stretchable and foldable silicon integrated circuits. Science 320: 507– 511

    Article  CAS  Google Scholar 

  • Kim DH, Lu NS, Ghaffari R et al (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10: 316–323

    Article  CAS  Google Scholar 

  • Kim DH, Lu NS, Ma R et al (2011) Epidermal electronics. Science 333: 838–843

    Article  CAS  Google Scholar 

  • Kim DH, Viventi J, Amsden JJ et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9: 511–517

    Article  CAS  Google Scholar 

  • Kim RH, Kim DH, Xiao JL et al (2010) Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 9: 929–937

    Article  CAS  Google Scholar 

  • Ko HC, Stoykovich MP, Song JZ et al (2008) A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454: 748–753

    Article  CAS  Google Scholar 

  • Li R, Li Y, Lü C et al (2012) Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis. Soft Matter 8: 3122–3127

    Article  CAS  Google Scholar 

  • Lu NS, Yoon J, Suo ZG (2007) Delamination of stiff islands patterned on stretchable substrates. Int J Mater Res 98: 717–722

    CAS  Google Scholar 

  • Lumelsky VJ, Shur MS, Wagner S (2001) Sensitive skin. Sens J IEEE 1: 41–51

    Article  CAS  Google Scholar 

  • Mannsfeld SCB, Tee BCK, Stoltenberg RM et al (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9: 859–864

    Article  CAS  Google Scholar 

  • Mark JE (1999) Polymer data handbook. Oxford University Press, New York

    Google Scholar 

  • Meitl MA, Zhu ZT, Kumar V et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5: 33–38

    Article  CAS  Google Scholar 

  • Nathan A, Park B, Sazonov A et al (2000) Amorphous silicon detector and thin film transistor technology for large-area imaging of X-rays. Microelectron J 31: 883–891

    Article  Google Scholar 

  • Okada Y, Tokumaru Y (1984) Precise determination of lattice-parameter and thermal-expansion coefficient of silicon between 300-K and 1500-K. J Appl Phys 56: 314–320

    Article  CAS  Google Scholar 

  • Saeidpourazar R, Li R, Li Y et al (2012) Laser-driven micro-transfer placement of prefabricated microstructures. J Microelectromech Syst. doi:10.1109/JMEMS.2012.2203097

  • Sekitani T, Nakajima H, Maeda H et al (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8: 494–499

    Article  CAS  Google Scholar 

  • Sekitani T, Zschieschang U, Klauk H et al (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9: 1015–1022

    Article  CAS  Google Scholar 

  • Someya T, Kato Y, Sekitani T et al (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102: 12321–12325

    Article  CAS  Google Scholar 

  • Someya T, Sekitani T (2009) Printed skin-like large-area flexible sensors and actuators. Proc Eurosens Xxiii Conf 1: 9–12

    CAS  Google Scholar 

  • Someya T, Sekitani T, Iba S et al (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 101: 9966–9970

    Article  CAS  Google Scholar 

  • Suo ZG (1989) Singularities interacting with interfaces and cracks. Int J Solids Struct 25: 1133–1142

    Article  Google Scholar 

  • Viventi J, Kim DH, Moss JD et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2:24ra22

    Google Scholar 

  • Viventi J, Kim DH, Vigeland L et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14: 1599–1605

    Article  CAS  Google Scholar 

  • Yoon J, Baca AJ, Park SI et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7: 907–915

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Huang.

Additional information

Rui Li and Yuhang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Li, Y., Lü, C. et al. Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing. Int J Fract 176, 189–194 (2012). https://doi.org/10.1007/s10704-012-9744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9744-9

Keywords

Navigation