Skip to main content
Log in

Simulation of ductile crack propagation in dual-phase steel

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The modified Mohr–Coulomb and the extended Cockcroft–Latham fracture criteria are used in explicit finite-element (FE) simulations of ductile crack propagation in a dual-phase steel sheet. The sheet is discretized using tri-linear solid elements and the element erosion technique is used to model the crack propagation. The numerical results are compared to quasi-static experiments conducted with five types of specimens (uniaxial tension, plane-strain tension, in-plane shear, 45° and 90° modified Arcan) made from a 2 mm thick sheet of the dual-phase steel Docol 600DL. The rate-dependent J 2 flow theory with isotropic hardening was used in the simulations. The predicted crack paths and the force–displacement curves were quite similar in the simulations with the different fracture criteria. Except for the 45° modified Arcan test, the predicted crack paths were in good agreement with the experimental findings. The effect of using a high-exponent yield function in the prediction of the crack path was also investigated, and it was found that this improved the crack path prediction for the 45° modified Arcan test. In simulations carried out on FE models with a denser spatial discretization, the prediction of localized necking and crack propagation was in better accordance with the experimental observations. In four out of five specimen geometries, a through-thickness shear fracture was observed in the experiments. By introducing strain softening in the material model and applying a dense spatial discretization, the slant fracture mode was captured in the numerical models. This did not give a significant change in the global behaviour as represented by the force–displacement curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Areias PM (2006) Analysis of finite strain anisotropic elastoplastic fracture in thin plates and shells. J Aerosp Eng 19: 259

    Article  Google Scholar 

  • Avramovic-Cingara G, Saleh CAR, Jain MK, Wilkinson DS (2009) Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans A 40: 3117–3127

    Article  Google Scholar 

  • Bai Y, Wierzbicki T (2010) Application of extended Mohr– Coulomb criterion to ductile fracture. Int J Fract 161: 1–20

    Article  CAS  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, London

    Google Scholar 

  • Bouchard PO, Bay F, Chastel Y, Tovena I (2000) Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng 189: 723–742

    Article  Google Scholar 

  • Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Metals 96: 33–39

    CAS  Google Scholar 

  • Curtze S (2009) Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates. Mater Sci Eng A Struct Mater 507: 124–131

    Article  Google Scholar 

  • de Borst R (2004) Damage, material instabilities, and failure. Encyclopedia of computational mechanics. Wiley, London

    Google Scholar 

  • Dørum C, Hopperstad OS, Berstad T, Dispinar D (2009) Numerical modelling of magnesium die-castings using stochastic fracture parameters. Eng Fract Mech 76: 2232–2248

    Article  Google Scholar 

  • Fagerholt E (2012) Field measurements in mechanical testing using close-range photogrammetry and digital image analysis, 2012:95. PhD thesis, Norwegian University of Science and Technology

  • Fagerholt E, Dørum C, Børvik T, Laukli HI, Hopperstad OS (2010) Experimental and numerical investigation of fracture in a cast aluminium alloy. Int J Solids Struct 47: 3352–3365

    Article  CAS  Google Scholar 

  • Fagerström M, Larsson R (2006) Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Methods Eng 66: 911–948

    Article  Google Scholar 

  • Freudenthal AM (1950) The inelastic behaviour of solids. Wiley, New York

    Google Scholar 

  • Fyllingen Ø, Hopperstad OS, Langseth M (2007) Stochastic simulations of square aluminium tubes subjected to axial loading. Int J Impact Eng 34: 1619–1636

    Article  Google Scholar 

  • Gruben G, Fagerholt E, Hopperstad OS, Børvik T (2011) Fracture characteristics of a cold-rolled dual-phase steel. Eur J Mech A Solids 30: 204–218

    Article  Google Scholar 

  • Gruben G, Hopperstad OS, Børvik T (2012a) Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL. Int J Mech Sci 62: 133–146

    Article  Google Scholar 

  • Gruben G, Vysochinskiy D, Coudert T, Reyes A, Lademo O-G (2012b) Determination of ductile fracture parameters of a dual-phase steel by optical measurements. Submitted for possible publication

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth, 1. Yield criteria and flow rules for porous ductile media. J Eng Mater Technol Trans ASME 99(1): 2–15

    Article  Google Scholar 

  • Hershey AV (1954) The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals. J Appl Mech 76: 241–249

    Google Scholar 

  • Hosford WF (1972) A general isotropic yield criterion. J Appl Mech 39: 607–609

    Article  Google Scholar 

  • Hutchinson JW (1964a) Plastic deformation of b.c.c. polycrystals. J Mech Phys Solids 12: 25–33

    Article  Google Scholar 

  • Hutchinson JW (1964b) Plastic stress–strain relations of F.C.C polycrystalline metals hardening according to Taylor’s rule. J Mech Phys Solids 12: 11–24

    Article  Google Scholar 

  • Hutchinson JW, Tvergaard V (1981) Shear band formation in plane strain. Int J Solids Struct 17: 451–470

    Article  Google Scholar 

  • Johnsen TK (2009) Fracture of ductile materials: experiments and simulation. Master thesis, Norwegian University of Science and Technology

  • Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21: 31–48

    Article  Google Scholar 

  • Kane A, Børvik T, Berstad T, Benallal A, Hopperstad OS (2011) Failure criteria with unilateral conditions for simulation of plate perforation. Eur J Mech A Solids 30: 468–476

    Article  Google Scholar 

  • Kazutake K (1999) Simulation of chevron crack formation and evolution in drawing. Int J Mech Sci 41: 1499–1513

    Article  Google Scholar 

  • Komori K (2005) Ductile fracture criteria for simulating shear by node separation method. Theor Appl Fract Mech 43: 101–114

    Article  Google Scholar 

  • Lemaitre J (1992) A course on damage mechanics. Springer, Berlin

    Google Scholar 

  • Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Li Y, Wierzbicki T, Sutton M, Yan J, Deng X (2011) Mixed mode stable tearing of thin sheet I 6061-T6 specimens: experimental measurements and finite element simulations using a modified Mohr–Coulomb fracture criterion. Int J Fract 168: 53–71

    Article  CAS  Google Scholar 

  • Lode W (1926) Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Zeitschrift für Physik A Hadrons and Nuclei 36: 913–939

    CAS  Google Scholar 

  • LSTC (2007) LS-DYNA keyword user’s manual, version 971. Livermore Software Technology Corporation, US-CA

  • MATLAB (2009) version 7.9 (R2009b). The MathWorks Inc, US-MA

  • Mediavilla J, Peerlings RHJ, Geers MGD (2006) A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput Struct 84: 604–623

    Article  Google Scholar 

  • Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67: 69–85

    Article  Google Scholar 

  • Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract 42: 21–40

    Article  Google Scholar 

  • Needleman A, Tvergaard V (1992) Analyses of plastic flow localization in metals. Appl Mech Rev 45: S3–S18

    Article  Google Scholar 

  • Nielsen KL, Hutchinson JW (2011) Cohesive traction–separation laws for tearing of ductile metal plates. Int J Impact Eng 48: 15–23

    Article  Google Scholar 

  • Rakvåg KG, Underwood N, Schleyerb GK, Børvik T, Hopperstad OS (2012) Transient pressure loading of plates with pre-formed holes. Int J Impact Eng. doi:10.1016/j.ijimpeng.2012.07.013

  • Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105: 97–111

    Article  CAS  Google Scholar 

  • Shima S, Oyane M (1976) Plasticity theory for porous metals. Int J Mech Sci 18: 285–291

    Article  Google Scholar 

  • Solberg JK, Leinum JR, Embury JD, Dey S, Børvik T, Hopperstad OS (2007) Localised shear banding in Weldox steel plates impacted by projectiles. Mech Mater 39: 865–880

    Article  Google Scholar 

  • SSAB (2009) Docol DP/DL Cold reduced dual phase steels. http://www.ssab.com/Global/DOCOL/datasheets_docol/en/201_Docol%20DP%20DL.pdf [cited:27.04.2012]

  • Tarigopula V, Langseth M, Hopperstad OS, Clausen AH (2006) Axial crushing of thin-walled high-strength steel sections. Int J Impact Eng 32: 847–882

    Article  Google Scholar 

  • Tvergaard V (2001) Crack growth predictions by cohesive zone model for ductile fracture. J Mech Phys Solids 49: 2191–2207

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1996) Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int J Solids Struct 33: 3297–3308

    Article  Google Scholar 

  • Wilkins ML, Streit RD, Reaugh JE (1980) Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests, Technical report UCRL-53058. Lawrence Livermore National Laboratory

  • Xue L, Wierzbicki T (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75: 3276–3293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gruben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruben, G., Hopperstad, O.S. & Børvik, T. Simulation of ductile crack propagation in dual-phase steel. Int J Fract 180, 1–22 (2013). https://doi.org/10.1007/s10704-012-9791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9791-2

Keywords

Navigation