Skip to main content
Log in

Damage measurements via DIC

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The present paper is devoted to the measurement of damage by resorting to image correlation techniques. This full-field measurement procedure gives access to 2D and 3D displacements that can be utilized to analyze damage mechanisms, to estimate damage fields, and to determine material parameters of damage growth laws. Different features associated with image correlation are addressed in the context of continuum damage mechanics. Applications concerning damage detection, damage quantification and damage model validation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abanto-Bueno J, Lambros J (2005) Experimental determination of cohesive failure properties of a photodegradable copolymer. Exp Mech 45(2):144–152

    Google Scholar 

  • Abry J, Bochard S, Chateauminois A, Salvia M, Giraud G (1999) In situ detection of damage in CFRP laminates by electrical resistance measurements. Compos Sci Tech 59:925–935

    Google Scholar 

  • Allix O, Hild F (eds) (2002) Continuum damage mechanics of materials and structures. Elsevier, Amsterdam (the Netherlands)

    Google Scholar 

  • Ambrose J, Hounsfield G (1973) Computerized transverse axial tomography. Br J Radiol 46(542):148–149

    Google Scholar 

  • Ashby M (1992) Physical modeling of materials problems. Mater Sci Tech 8:102–111

    Google Scholar 

  • Ashby M, Dyson B (1984) Creep damage mechanics and micromechanisms. Tech Rep 77, Natl. Phys. Lab. UK

  • Avril S, Bonnet M, Bretelle A, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402

    Google Scholar 

  • Babout L, Maire E, Buffière J, Fougères R (2001) Characterisation by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Mater 49(11):2055–2063

    Google Scholar 

  • Babout L, Maire E, Fougères R (2004) Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater 52:2475–2487

    Google Scholar 

  • Baruchel J, Buffière J, Maire E, Merle P, Peix G (eds) (2000) X-Ray tomography in material sciences. Hermes Science, Paris (France)

    Google Scholar 

  • Bay B, Smith T, Fyhrie D, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226

    Google Scholar 

  • Beevers C (1982) Advances in crack length measurement. EMAS, West Midlands (UK)

    Google Scholar 

  • Ben Azzouna M, Périé J, Guimard J, Hild F, Roux S (2011) On the identification and validation of an anisotropic damage model by using full-field measurements. Int J Damage Mech 20(8):1130–1150

  • Bentz D, Martys N, Stutzman P, Levenson M, Garboczi E, Dunsmuir J, Schwartz L (1995) X-ray microtomography of an ASTM C109 mortar exposed to sulfate attack. In: Diamond S, Mindess S, Glasser F, Roberts L (eds) MRS symposium, vol 370. MRS, Pittsburg (PA), pp 77–82

    Google Scholar 

  • Berthaud Y (1991) Damage measurements in concrete via an ultrasonic technique. Part I experiment. Cement Concr Res 21(1):73–82

    Google Scholar 

  • Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin–Le Châtelier bands. Exp Mech 46:789–803

    Google Scholar 

  • Billardon R, Doghri I (1989) Prediction of macro-crack initiation by damage localization. C R Acad Sci Paris II 308(4):347–352

    Google Scholar 

  • Bontaz-Carion J, Pellegrini Y (2006) X-ray microtomography analysis of dynamic damage in tantalum. Adv Eng Mater 8(6):480–486

    Google Scholar 

  • Borbély A, Dzieciol K, Sket F, Isaac A, di Michiel M, Buslaps T, Kaysser-Pyzalla A (2011) Characterization of creep and creep damage by in-situ microtomography. JOM 63(7):78–84

    Google Scholar 

  • Bornert M, Bretheau T, Gilormini P (eds) (2008) Homogenization in mechanics of materials. Lavoisier, Paris

    Google Scholar 

  • Borré G, Maier G (1989) On linear versus nonlinear flaw rules in strain localization analysis. Meccanica 24:36–41

    Google Scholar 

  • Bouterf A, Roux S, Hild F, Adrien J, Maire E (2014) Digital volume correlation applied to X-ray tomography images from spherical indentation tests on lightweight gypsum. Strain 50(5):444–453

    Google Scholar 

  • Budiansky B, O’Connell R (1976) Elastic moduli of a cracked system. Int J Solids Struct 12:81–97

    Google Scholar 

  • Buffière J, Maire E, Adrien J, Masse J, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305

  • Buffière J, Maire E, Cloetens P, Lormand G, Fougères R (1999) Characterisation of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater 47(5):1613–1625

  • Burr A, Hild F, Leckie F (1995) Micro-mechanics and continuum damage mechanics. Arch Appl Mech 65(7):437–456

    Google Scholar 

  • Chalal H, Meraghni F, Pierron F, Grédiac M (2004) Direct identification of the damage behaviour of composite materials using the virtual fields method. Compos Part A 35:841–848

    Google Scholar 

  • Chermant J, Boitier G, Darzens S, Coster M, Chermant L (2001) Damage morphological parameters. Image Anal Stereol 20:207–211

    Google Scholar 

  • Chu T, Ranson W, Sutton M, Peters W (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 3(25):232–244

    Google Scholar 

  • Cipollina A, López-Inojosa A, Flórez-López J (1995) A simplified damage mechanics approach to nonlinear analysis of frames. Comput Struct 54(6):1113–1126

    Google Scholar 

  • Claire D, Hild F, Roux S (2002) Identification of damage fields using kinematic measurements. C R Mécanique 330:729–734

    Google Scholar 

  • Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Methods Eng 61(2):189–208

    Google Scholar 

  • Claire D, Hild F, Roux S (2007) Identification of a damage law by using full-field displacement measurements. Int J Damage Mech 16(2):179–197

    Google Scholar 

  • Cocks A, Leckie F (1987) Creep constitutive equations for damaged materials, vol 25. Academic Press, New York

    Google Scholar 

  • Coster M, Chermant JL (2001) Image analysis and mathematical morphology for civil engineering materials. Cem Concr Compos 23(2–3):133–151

    Google Scholar 

  • Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math 57(11):1413–1457

    Google Scholar 

  • Denoual C, Hild F (2000) A damage model for the dynamic fragmentation of brittle solids. Comput Methods Appl Mech Eng 183:247–258

    Google Scholar 

  • Desrues J, Viggiani G, Bésuelle P (eds) (2006) Advances in X-ray tomography for geomaterials. Wiley/ISTE, New York

    Google Scholar 

  • Doghri I, Billardon R (1995) Investigation of localization due to damage in elasto-plastic materials. Mech Mater 19:129–149

    Google Scholar 

  • Eshelby J (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc Lond A 252:561–569

    Google Scholar 

  • Evans A (1990) Perspectives on the development of high-toughness ceramics. J Am Ceram Soc 73(2):187–206

    Google Scholar 

  • Fedele R, Raka B, Hild F, Roux S (2009) Identification of adhesive properties in glare assemblies by digital image correlation. J Mech Phys Solids 57:1003–1016

    Google Scholar 

  • Flannery B, Deckman H, Roberge W, D’Amico K (1987) Three-dimensional microtomography. Science 237:1439–1444

    Google Scholar 

  • Geers M, De Borst R, Peijs T (1999) Mixed numerical-experimental identification of non-local characteristics of random-fibre-reinforced composites. Compos Sci Tech 59:1569–1578

    Google Scholar 

  • Gras R, Leclerc H, Hild F, Roux S, Schneider J (2015) Identification of a set of macroscopic elastic parameters in a 3D woven composite: uncertainty analysis and regularization. Int J Solids Struct 55:2–16

    Google Scholar 

  • Grédiac M, Hild F (eds) (2012) Full-field measurements and identification in solid mechanics. ISTE/Wiley, London

    Google Scholar 

  • Hall F, Hayhurst D (1991) Continuum damage mechanics modeling of high temperature deformation and failure in a pipe weldment. Proc R Soc Lond A 433:383–403

    Google Scholar 

  • Helfen L, Baumbach T, Mikulík P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86(7):071,915

    Google Scholar 

  • Helfen L, Morgeneyer T, Xu F, Mavrogordato M, Sinclair I, Schillinger B, Baumbach T (2012) Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens. Int J Mater Res 2012(2):170– 173

    Google Scholar 

  • Helfen L, Myagotin A, Mikulík P, Pernot P, Voropaev A, Elyyan M, Di Michiel M, Baruchel J, Baumbach T (2011) On the implementation of computed laminography using synchrotron radiation. Rev Sci Instrum 82:063702

    Google Scholar 

  • Helfen L, Myagotin A, Rack A, Pernot P, Mikulík P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Status Solidi (a) 204:2760–2765

    Google Scholar 

  • Hellier C (2001) Handbook of nondestructive evaluation. McGraw Hill, New York

    Google Scholar 

  • Hild F, Burr A, Leckie F (1994) Fiber breakage and fiber pull-out of fiber-reinforced ceramic-matrix composites. Eur J Mech A/Solids 13(6):731–749

    Google Scholar 

  • Hild F, Burr A, Leckie F (1996) Matrix cracking and debonding in ceramic-matrix composites. Int J Solids Struct 33(8):1209–1220

    Google Scholar 

  • Hild F, Fanget A, Adrien J, Maire E, Roux S (2011) Three dimensional analysis of a tensile test on a propellant with digital volume correlation. Arch Mech 63(5–6):1–20

    Google Scholar 

  • Hild F, Larsson P, Leckie F (1992) Localization due to damage in fiber reinforced composites. Int J Solids Struct 29(24):3221–3238

    Google Scholar 

  • Hild F, Périé JN, Roux S (2014) Evaluating damage with digital image correlation: C. Applications to composite materials. In: Voyiadjis G (ed) Handbook of damage mechanics. Springer, New York, pp 1301–1322

    Google Scholar 

  • Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties—a review. Strain 42:69–80

    Google Scholar 

  • Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Google Scholar 

  • Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical methods for solid mechanics. A full-field approach. Wiley-VCH, Weinheim, pp 183–228

    Google Scholar 

  • Hild F, Roux S (2014a) Evaluating damage with digital image correlation: A. Introductory remarks and detection of physical damage. In: Voyiadjis G (ed) Handbook of damage mechanics. Springer, New York, pp 1255–1275

    Google Scholar 

  • Hild F, Roux S (2014b) Evaluating damage with digital image correlation: B. From physical to mechanical damage. In: Voyiadjis G (ed) Handbook of damage mechanics. Springer, New York, pp 1277–1299

    Google Scholar 

  • Hild F, Roux S, Bernard D, Hauss G, Rebai M (2013) On the use of 3D images and 3D displacement measurements for the analysis of damage mechanisms in concrete-like materials. In: Van Mier J, Ruiz G, Andrade C, Yu R, Zhang X (eds). 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, pp 1–11

  • Hild F, Roux S, Gras R, Guerrero N, Marante M, Flórez-López J (2009) Displacement measurement technique for beam kinematics. Opt Lasers Eng 47:495–503

    Google Scholar 

  • Hild F, Roux S, Guerrero N, Marante M, Florez-Lopez J (2011) Calibration of constitutive models of steel beams subject to local buckling by using digital image correlation. Eur J Mech A/Solids 30:1–10

    Google Scholar 

  • Hounsfield G (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022

    Google Scholar 

  • Huppmann M, Camin B, Pyzalla AR, Reimers W (2010) In-situ observation of creep damage evolution in \(\text{ Al-Al }_2\text{ O }_3\) MMCs by synchrotron X-ray microtomography. Int J Mater Res 101:372–379

    Google Scholar 

  • Isaac A, Sket F, Reimers W, Camin B, Sauthoff G, Pyzalla A (2008) In situ 3D quantification of the evolution of creep cavity size, shape, and spatial orientation using synchrotron X-ray tomography. Mater Sci Eng A 478(1–2):108–118

    Google Scholar 

  • Kachanov L (1958) Time of the rupture process under creep conditions. Bull SSR Acad Sci Div Tech Sci (in Russian) 8:26–31

    Google Scholar 

  • Kachanov L (1961) Rupture time under creep conditions. In: Radok J (ed) Problems of continuum mechanics. SiAM, Philadelphia, pp 202–218

    Google Scholar 

  • Kachanov L (1980) Crack and damage growth in creep—a combined approach. Int J Fract 16(4):R179–R181

    Google Scholar 

  • Kak A, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Krajcinovic D (1996) Damage mechanics., North Holland Series in Appl Math and Mech Elsevier, Amsterdam

  • Landis E, Zhang T, Nagy E, Nagy G, Franklin WR (2007) Cracking, damage and fracture in four dimensions. Mater Struct 40:357–364

    Google Scholar 

  • Landron C, Bouaziz O, Maire E, Adrien J (2010) Characterization and modeling of void nucleation by interface decohesion in dual phase steels. Scripta Mater 63:973–976

    Google Scholar 

  • Landron C, Maire E, Adrien J, Bouaziz O, Di Michiel M, Cloetens P, Suhonen H (2012) Resolution effect on the study of ductile damage using synchrotron X-ray tomography. Nucl Instrum Methods Phys Res B 284:15–18

    Google Scholar 

  • Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A (2011) Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater 59(20):7564–7573

    Google Scholar 

  • Leclerc H, Périé J, Hild F, Roux S (2012) Digital volume correlation: What are the limits to the spatial resolution? Mech Ind 13:361–371

    Google Scholar 

  • Leclerc H, Périé J, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. In: Gagalowicz A, Philips W (eds) MIRAGE 2009, vol LNCS 5496. Springer, Berlin, pp 161–171

    Google Scholar 

  • Leclerc H, Périé J, Roux S, Hild F (2011) Voxel-scale digital volume correlation. Exp Mech 51(4):479–490

    Google Scholar 

  • Lemaitre J (1978) Théorie mécanique de l’endommagement isotrope appliqué à la fatigue des métaux. In: Halphen B, Nguyen Q (eds) Matériaux et structures sous chargement cyclique. Association Amicale des Ingénieurs Anciens Elèves de l’E.N.P.C., Paris, pp 133–144

  • Lemaitre J (1992) A course on damage mechanics. Springer, Berlin

    Google Scholar 

  • Lemaitre J, Cordebois J, Dufailly J (1979) Elasticity and damage coupling. C R Acad Sci Paris Ser B 288(23):391–394

    Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Berlin

    Google Scholar 

  • Lemaitre J, Dufailly J (1977) Modélisation et identification de l’endommagement plastique des métaux. In: 3e congrés français de mécanique. Grenoble

  • Lemaitre J, Dufailly J (1987) Damage measurements. Eng Fract Mech 28(5–6):643–661

    Google Scholar 

  • Lemaitre J, Marquis D (1992) Modeling complex behavior of metals by the ‘state-kinetic coupling theory’. ASME J Eng Mater Tech 114:250–254

    Google Scholar 

  • Limodin N, Réthoré J, Buffière J, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Mater 57(14):4090–4101

  • Locker J, Prenter P (1980) Regularization with differential operators. I. General theory. J Math Anal Appl 74:504–529

    Google Scholar 

  • Maire E (2003) Quantitative measurement of damage. Presses Ecole des Mines de Paris, Paris, pp 79–108

    Google Scholar 

  • Maire E, Bouaziz O, Di Michiel M, Verdu C (2008) Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater 56(18):4954–4964

    Google Scholar 

  • Maire E, Carmona V, Courbon J, Ludwig W (2007) Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater 55:6806–6815

    Google Scholar 

  • Maire E, Morgeneyer T, Landron C, Adrien J, Helfen L (2012) Bulk evaluation of ductile damage development using high resolution tomography and laminography. C R Phys 13:328–336

    Google Scholar 

  • Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43

    Google Scholar 

  • Marante M, Florez-Lopez J (2002) Model of damage for RC elements subjected to biaxial bending. Eng Struct 24(9):1141–1152

    Google Scholar 

  • Marante M, Flórez-López J (2003) Three-dimensional analysis of reinforced concrete frames based on lumped damage mechanics. Int J Solids Struct 40(19):5109–5123

    Google Scholar 

  • Marigo J, Pham K, Sicsic P (2015) Gradient damage models: a relevant approach to account for nucleation and propagation of cracks. Int J Fract

  • Martin C, Josserond C, Salvo L, Blandin J, Cloetens P, Boller E (2000) Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation. Scripta Mater 42(4):375–381

    Google Scholar 

  • Mathieu F, Aimedieu P, Guimard J, Hild F (2013) Identication of interlaminar fracture properties of a composite laminate using local full-field kinematic measurements and finite element simulations. Compos Part A 49:203–213

    Google Scholar 

  • Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp. Mech. doi:10.1007/s11340-014-9888-9

    Google Scholar 

  • McNeill S, Peters W, Sutton M (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28(1):101–112

    Google Scholar 

  • Mills K (1991) Fractography, vol 12. ASM International, Materials Park

    Google Scholar 

  • Moffat A, Wright P, Helfen L, Baumbach T, Johnson G, Spearing S, Sinclair I (2010) In situ synchrotron computed laminography of damage in carbon fibre-epoxy [90/0]s laminates. Scripta Mater 62:97–100

    Google Scholar 

  • Morgeneyer T, Besson J (2011) Flat to slant ductile fracture transition: tomography examination and simulations using shear controlled void nucleation. Scripta Mater 65:1002–1005

    Google Scholar 

  • Morgeneyer T, Helfen L, Mubarak H, Hild F (2013) 3D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Exp Mech 53(4):543–556

    Google Scholar 

  • Morgeneyer T, Helfen L, Sinclair I, Proudhon H, Xu F, Baumbach T (2011) Ductile crack initiation and propagation assessed via in situ synchrotron radiation computed laminography. Scripta Mater 65:1010–1013

    Google Scholar 

  • Morgeneyer T, Taillandier-Thomas T, Helfen L, Baumbach T, Sinclair I, Roux S, Hild F (2014) In situ 3D observation of early strain localisation during failure of thin Al alloy (2198) sheet. Acta Mater 69:78–91

    Google Scholar 

  • NSF blue ribbon panel (2006) Simulation-based engineering sciences. Final report, NFS www.nsf.gov/pubs/reports/sbes_final_report

  • Odqvist F (1964) On the theories of creep rupture. In: Reiner M, Abir D (eds) International symposium on second order elasticity, plasticity and fluid dynamics. Pergamon Press, London, pp 295–313

  • Peerlings R, de Borst R, Brekelmans W, de Vree J (1996) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403

    Google Scholar 

  • Peters W, Ranson W (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21:427–431

    Google Scholar 

  • Pijaudier-Cabot G, Bažant Z (1987) Nonlocal damage theory. ASCE J Eng Mech 113(10):1512–1533

    Google Scholar 

  • Prabhakaran R (1990) Damage assessment through electrical resistance measurement in graphite fiber-reinforced composites. Exp Tech 14(1):16–20

    Google Scholar 

  • Périé J, Leclerc H, Roux S, Hild F (2009) Digital image correlation and biaxial test on composite material for anisotropic damage law identification. Int J Solids Struct 46:2388–2396

  • Puncreobutr C, Lee PD, Kaye M, Balint D, Farrugia D, Connolley T, Lin J (2012) Quantifying damage accumulation during the hot deformation of free-cutting steels using ultra-fast synchrotron tomography vol 33, pp 012038

  • Pyzalla A, Camin B, Buslaps T, Di Michiel M, Kaminski H, Kottar A, Pernack A, Reimers W (2005) Simultaneous tomography and diffraction analysis of creep damage. Science 308(5718):92–95

    Google Scholar 

  • Rabotnov Y (1963) On the equations of state for creep. McMillan, New York

    Google Scholar 

  • Rannou J, Limodin N, Rèthorè J, Gravouil A, Ludwig W, Baïetto M, Buffière J, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199:1307–1325

    Google Scholar 

  • Rastogi P (ed) (2000) Photomechanics, topics in applied physics, vol 77. Springer, Berlin

    Google Scholar 

  • Rastogi P, Hack E (eds) (2012) Optical methods for solid mechanics. A full-field approach. Wiley-VCH, Berlin

    Google Scholar 

  • Rice J (1976) The localization of plastic deformations. North-Holland, Amsterdam

    Google Scholar 

  • Rice J, Rudnicki J (1980) A note on some features of the theory of localization of deformation. Int J Solids Struct 16:597– 605

    Google Scholar 

  • Rougelot T, Burlion N, Bernard D, Skoczylas F (2010) About microcracking due to leaching in cementitious composites: X-ray microtomography and numerical approach. Cem Concr Res 40:271–283

    Google Scholar 

  • Roux S, Hild F (2002) On the relevance of mean field to continuum damage mechanics. Int J Fract 116(3):219–229

    Google Scholar 

  • Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1–4):141–157

    Google Scholar 

  • Roux S, Hild F (2008) Digital image mechanical identification (DIMI). Exp Mech 48(4):495–508

    Google Scholar 

  • Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A 39(8):1253–1265

    Google Scholar 

  • Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 42:214,004

    Google Scholar 

  • Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Numer Methods Eng 84(6):631–660

    Google Scholar 

  • Réthoré J, Estevez R (2013) Identification of a cohesive zone model from digital images at the micron-scale. J Mech Phys Solids 61(6):1407–1420

    Google Scholar 

  • Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis fractured samples. Eur J Comput Mech 18:285–306

    Google Scholar 

  • Rupil J, Roux S, Hild F, Vincent L (2011) Fatigue microcrack detection with digital image correlation. J Strain Anal 46(6):492–509

    Google Scholar 

  • Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffière JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nucl Inst Methods Phys Res B 200:273–286

  • Sanchez-Palencia E, Zaoui A (1987) Homogenization techniques for composite media. Lecture notes in physics, vol 272. Springer, Berlin

  • Shen Y, Morgeneyer T, Garnier J, Allais L, Helfen L, Crépin J (2013) Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater 61(7):2571–2582

    Google Scholar 

  • Smith T, Bay B, Rashid M (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42(3):272–278

    Google Scholar 

  • Stock S (2008) Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53(3):129–181

    Google Scholar 

  • Stock SR, Naik NK, Wilkinson AP, Kurtis KE (2002) X-ray microtomography (microCT) of the progression of sulfate attack of cement paste. Cem Concr Res 32(10):1673–1675

    Google Scholar 

  • Sutton M (2013) Computer vision-based, noncontacting deformation measurements in mechanics: a generational transformation. Appl Mech Rev 65(AMR-13-1009, 050802)

  • Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts. Theory and applications. Springer, New York

    Google Scholar 

  • Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Google Scholar 

  • Sutton MA, Yan J, Deng X, Cheng CS, Zavattieri P (2007) Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading. Opt Eng 46(5):051003

    Google Scholar 

  • Taillandier-Thomas T, Roux S, Morgeneyer T, Hild F (2014) Localized strain field measurement on laminography data with mechanical regularization. Nucl Inst Methods Phys Res B 324:70–79

  • Tasan C, Hoefnagels J, Geers M (2010) Indentation-based damage quantification revisited. Scripta Mater 63:316–319

    Google Scholar 

  • Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Wiley, New York

  • Tomičevič Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Anal 48:330–343

    Google Scholar 

  • Voyiadjis GZ (ed) (2014) Handbook of damage mechanics. Springer, New York

    Google Scholar 

  • Weck A, Wilkinson DS, Maire E, Toda H (2008) Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials. Acta Mater 56(12):2919–2928

  • Withers P, Preuss M (2012) Fatigue and damage in structural materials studied by X-ray tomography. Ann Rev Mater Res 42:81–103

    Google Scholar 

  • Xu F, Helfen L, Moffat A, Johnson G, Sinclair I, Baumbach T (2010) Synchrotron radiation computed laminography for polymer composite failure studies. J Synchrotron Radiat 17:222–226

    Google Scholar 

  • Zhang H, Scholz AK, Vion-Loisel F, Merckel Y, Brieu M, Brown H, Roux S, Kramer E, Creton C (2013) Opening and closing of nanocavities under cyclic loading in a soft nanocomposite probed by real time small angle X-ray scattering. Macromolecules 46(3):900–913

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Saint-Gobain Recherche, by ANRT through Grant no. 2010/567, and by the French “Agence Nationale de la Recherche,” through the “Investissements d’avenir” program (ANR-10-EQPX-37 MATMECA Grant). The authors would like to warmly thank Drs. Jean-Louis Chaboche, André Dragon, and Prof. Jean Lemaitre for numerous discussions on issues introduced in the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Hild.

Additional information

Special Volume Celebrating 50 years of the International Journal of Fracture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hild, F., Bouterf, A. & Roux, S. Damage measurements via DIC. Int J Fract 191, 77–105 (2015). https://doi.org/10.1007/s10704-015-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0004-7

Keywords

Navigation