Skip to main content
Log in

A polygonal finite element method for modeling crack propagation with minimum remeshing

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, a polygonal finite element method is presented for crack growth simulation with minimum remeshing. A local polygonal mesh strategy is performed employing polygonal finite element method to model the crack propagation. In order to model the singular crack tip fields, the convex and concave polygonal elements are modified based on the singular quarter point isoparametric concept that improves the accuracy of the stress intensity factors. Numerical simulations are performed to demonstrate the efficiency of various polygonal shape functions, including the Wachspress, metric, Laplace and mean value shape functions, in modeling the crack tip fields. Eventually, analogy of the results with the existing numerical and experimental data is carried out depicting accuracy of the propounded technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  • Baker AJ (2012) Finite elements: computational engineering sciences. Wiley, New Jersey

    Book  Google Scholar 

  • Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Meth Eng 10:25–37

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45:601–620

    Article  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comp Meth Appl Mech Eng 139:3–47

    Article  Google Scholar 

  • Biabanaki SOR, Khoei AR (2012) A polygonal finite element method for modeling arbitrary interfaces in large deformation problems. Comput Mech 50:19–33

    Article  Google Scholar 

  • Biabanaki SOR, Khoei AR, Wriggers P (2014) Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comp Meth Appl Mech Eng 269:198–221

    Article  Google Scholar 

  • Bouchard PO, Bay F, Chastel Y (2003) Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comp Meth Appl Mech Eng 192:3887–3908

    Article  Google Scholar 

  • Bouchard PO, Bay F, Chastel Y, Tovena I (2000) Crack propagation modeling using an advanced remeshing. Comp Meth Appl Mech Eng 189:723–742

    Article  Google Scholar 

  • Bui HD (1983) Associated path independent J-integral for separating mixed modes. J Mech Phys Solids 31:439–448

    Article  Google Scholar 

  • Chan SK, Tuba IS, Wilson WK (1970) On the finite element method in linear fracture mechanics. Eng Fract Mech 2:1–17

    Article  Google Scholar 

  • Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Polygonal finite elements for finite elasticity. Int J Numer Meth Eng 101:305–328

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525

    Article  Google Scholar 

  • Floater MS (2003) Mean value coordinates. Comp Aided Geo Des 20:19–27

    Article  Google Scholar 

  • Floater MS, Hormann K, Kos G (2006) A general construction of barycentric coordinates over convex polygons. Adv Comput Math 24:311–331

    Article  Google Scholar 

  • Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comp Meth Appl Mech Eng 282:132–160

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  • Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Meth Eng 9:495–507

    Article  Google Scholar 

  • Hormann K (2004) Barycentric coordinates for arbitrary polygons in the plane. Technical Report, Clausthal University of Technology, Germany

  • Huang R, Sukumar N, Prevost JH (2003) Modeling quasi-static crack growth with the extended finite element method, part II: numerical applications. Int J Solids Struct 40:7539– 7552

    Article  Google Scholar 

  • Hussain M, Pu S, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II. ASTM STP 560:2–28

    Google Scholar 

  • Ingraffea AR (2004) Computational fracture mechanics. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 2. Wiley, New Jersey

    Google Scholar 

  • Ingraffea AR, Grigoriu M (1990) Probabilistic fracture mechanics: a validaition of predictive capability. Technical Report, Cornell University, New York

  • Khoei AR (2015) Extended finite element method, theory and applications. Wiley, New Jersey

    Google Scholar 

  • Khoei AR, Azadi H, Moslemi H (2008) Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique. Eng Fract Mech 75:2921–2945

    Article  Google Scholar 

  • Khoei AR, Eghbalian M, Moslemi H, Azadi H (2013) Crack growth modeling via 3D automatic adaptive mesh refinement based on modified-SPR technique. Appl Math Model 37:357–383

    Article  Google Scholar 

  • Khoei AR, Moslemi H, Ardakany KM, Barani OR, Azadi H (2009) Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique. Int J Fract 159:21–41

    Article  Google Scholar 

  • Khoei AR, Yasbolaghi R, Biabanaki SOR (2015) A polygonal-FEM technique in modeling large sliding contact on non-conformal meshes; a study on polygonal shape functions. Eng Comput 32:1391–1431

    Article  Google Scholar 

  • Leon SE, Spring DW, Paulino GH (2014) Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. Int J Numer Meth Eng 100:555–576

    Article  Google Scholar 

  • Li FZ, Shih CF, Needleman A (1985) A Comparison of methods for calculating energy release rates. Eng Fract Mech 21:405–421

    Article  Google Scholar 

  • Malsch EA, Dasgupta G (2004a) Interpolations for temperature distributions: a method for all non-concave polygons. Int J Solids Struct 41:2165–2188

    Article  Google Scholar 

  • Malsch EA, Dasgupta G (2004b) Shape functions for polygonal domains with interior nodes. Int J Numer Meth Eng 61:1153–1172

    Article  Google Scholar 

  • Malsch EA, Lin JJ, Dasgupta G (2005) Smooth two-dimensional interpolations: a recipe for all polygons. J Graph 10:27–39

    Google Scholar 

  • Manzini G, Russo A, Sukumar N (2014) New perspectives on polygonal and polyhedral finite element methods. Math Mod Meth Appl Sci 24:1665–1699

    Article  Google Scholar 

  • Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7:13–22

    Article  Google Scholar 

  • Mildbradt P, Pick T (2008) Polytope finite element. Int J Numer Meth Eng 73:1811–1835

    Article  Google Scholar 

  • Moslemi H, Khoei AR (2009) 3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method. Eng Fract Mech 76:1703–1728

    Article  Google Scholar 

  • Mousavi SE, Xiao H, Sukumar N (2010) Generalized Gaussian quadrature rules on arbitrary polygons. Int J Numer Meth Eng 82:99–113

    Google Scholar 

  • Natarajan S, Bordas S, Roy Mahapatra D (2009) Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping. Int J Numer Meth Eng 80:103–134

    Article  Google Scholar 

  • Ooi ET, Song C, Tin-Loi F, Yang Z (2012a) Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements. Eng Fract Mech 93:13–33

    Article  Google Scholar 

  • Ooi ET, Song C, Tin-Loi F, Yang Z (2012b) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Meth Eng 91:319–342

    Article  Google Scholar 

  • Pinkall U, Polthier K (1993) Computing discrete minimal surfaces and their conjugates. Exper Math 2:15–36

    Article  Google Scholar 

  • Rand A, Gillete A, Bajaj C (2014) Quadratic serendipity finite elements on polygons using generalized barycentric coordinates. Math Comput 83:2691–2716

    Article  Google Scholar 

  • Rashid MM (1998) The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis. Comp Meth Appl Mech Eng 154:133–150

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  • Sih G (1974) Strain–energy–density factor applied to mixed mode crack problems. Int J Fract 10:305–321

    Article  Google Scholar 

  • Spring DW, Leon SE, Paulino GH (2014) Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. Int J Fract 189:33–57

    Article  Google Scholar 

  • Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Meth Eng 61:2159–2181

    Article  Google Scholar 

  • Sukumar N (2013) Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons. Comp Meth Appl Mech Eng 263:27–41

    Article  Google Scholar 

  • Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Meth Eng 13:129–163

    Article  Google Scholar 

  • Sukumar N, Moran B, Semenov AY, Belikov VV (2001) Natural neighbour Galerkin methods. Int J Numer Meth Eng 50:1–27

    Article  Google Scholar 

  • Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Meth Eng 61:2045–2066

    Article  Google Scholar 

  • Tabarraei A, Sukumar N (2005) Adaptive computations on conforming quadtree meshes. Finite Elem Anal Des 41:686–702

    Article  Google Scholar 

  • Tabarraei A, Sukumar N (2006) Application of polygonal finite elements in linear elasticity. Int J Comput Meth 3:503–520

    Article  Google Scholar 

  • Talischi C, Paulino GH (2014) Addressing integration error for polygonal finite elements through polynomial projections: a patch test connection. Math Mod Meth Appl Sci 24:1701–1727

    Article  Google Scholar 

  • Talischi C, Pereira A, Paulino GH, Menezes IFM, Carvalho MS (2014) Polygonal finite elements for incompressible fluid flow. Int J Numer Meth Fluids 74:134–151

    Article  Google Scholar 

  • Wachspress EL (1975) A rational finite element basis. Academic Press, New York

    Google Scholar 

  • Warren J (1996) Barycentric coordinates for convex polytopes. Adv Comput Math 6:97–108

    Article  Google Scholar 

  • Warren J, Schaefer S, Hirani AN, Desbrun M (2007) Barycentric coordinates for convex sets. Adv Comput Math 27:319–338

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the research support of the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Khoei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoei, A.R., Yasbolaghi, R. & Biabanaki, S.O.R. A polygonal finite element method for modeling crack propagation with minimum remeshing. Int J Fract 194, 123–148 (2015). https://doi.org/10.1007/s10704-015-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0044-z

Keywords

Navigation