Skip to main content
Log in

Recent advances on hydrogen embrittlement of structural materials

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents a critical review of current understanding of the effect of hydrogen on fracture and fatigue of metals and alloys. First, microstructures found immediately beneath hydrogen-induced fracture surfaces in various materials are presented. Then, recent progress toward the fundamentals of hydrogen-induced fracture is reported. Lastly, a recent attempt to model hydrogen embrittlement by linking the macroscale (e.g. applied load and hydrogen content) and the operating microscopic degradation mechanism at the local microstructural defect level is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abe N, Suzuki H, Takai K, Hagihara Y, Sueyoshi H, Ishikawa N (2010) Hydrogen desorption spectra of \(\upalpha \)-Fe including carbon using thermal desorption spectrometer detected from low-temperature. In: CAMP-ISIJ. The 159th Iron and Steel Institute of Japan (ISIJ) Meeting, Ibaraki, Japan, Mar 28–30, 2010, vol 23

  • Abe N, Suzuki H, Takai K, Ishikawa N, Sueyoshi H (2011) Identification of hydrogen trapping sites, binding energies, and occupation ratios at vacancies, dislocations and grain boundaries in iron of varying carbon content. Materials Science and Technology (MS&T) 2011. The Minerals, Metals and Materials Society, Warrendale, PA, pp 1277–1284

  • Beachem CD (1972) New model for hydrogen-assisted cracking (hydrogen embrittlement). Metall Trans 3(2):437–451. doi:10.1007/BF02642048

    Article  Google Scholar 

  • Bechtle S, Kumar M, Somerday BP, Launey ME, Ritchie RO (2009) Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater 57(14):4148–4157. doi:10.1016/j.actamat.2009.05.012

    Article  Google Scholar 

  • Bernstein IM, Thompson AW (1984) The role of microstructure in hydrogen embrittlement. In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. American Society for Metals, Metal Park, OH, pp 135–152

    Google Scholar 

  • Birnbaum HK (1977) Hydrogen related failure mechanisms in metals. In: Foroulis ZA (ed) Environmental sensitive fracture of engineering materials: proceedings of symposium on environmental effects on fracture. Metallurgical Society of AIME, Warrendale, PA, pp 326–360

    Google Scholar 

  • Birnbaum HK, Robertson IM, Sofronis P, Teter D (1997) Mechanisms of hydrogen related fracture—a review. In: Magnin T (ed) Corrosion-deformation interactions, CDI’96. The Institute of Materials, London, pp 172–195

    Google Scholar 

  • Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater Sci Eng A 176(1–2):191–202. doi:10.1016/0921-5093(94)90975-X

    Article  Google Scholar 

  • Cialone HJ, Holbrook JH (1988) Sensitivity of steels to degradation in gaseous hydrogen. In: Raymond L (ed) Hydrogen embrittlement: prevention and control, ASTM STP 962. ASTM, Philadelphia, PA, pp 134–152

    Chapter  Google Scholar 

  • Choo WY, Lee JY (1982) Thermal analysis of trapped hydrogen in pure iron. Metall Trans A 13A:135–140

    Article  Google Scholar 

  • Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater 26(2):203–206. doi:10.1016/0956-716X(92)90173-C

    Article  Google Scholar 

  • Dadfarnia M, Novak P, Ahn DC, Liu JB, Sofronis P, Johnson DD, Robertson IM (2010) Recent advances in the study of structural materials compatibility with hydrogen. Adv Mater 22(10):1128–1135. doi:10.1002/adma.200904354

    Article  Google Scholar 

  • Dadfarnia M, Martin ML, Nagao A, Sofronis P, Robertson IM (2015) Modeling hydrogen transport by dislocations. J Mech Phys Solids 78:511–525. doi:10.1016/j.jmps.2015.03.002

    Article  Google Scholar 

  • Ebihara K, Suzudo T, Kaburaki H, Takai K, Takebayashi S (2007) Modeling of hydrogen thermal desorption profile of pure iron and eutectoid steel. ISIJ Int 47:1131–1140. doi:10.2355/isijinternational.47.1131

    Article  Google Scholar 

  • Ebihara K, Kaburaki H, Suzudo T, Takai K (2009) A numerical study on the validity of the local equilibrium hypothesis in modeling hydrogen thermal desorption spectra. ISIJ Int 49:1907–1913. doi:10.2355/isijinternational.49.1907

    Article  Google Scholar 

  • Flanagan TB, Mason NB, Birnbaum HK (1981) The effect of stress on hydride precipitation. Scripta Metall 15(1):109–112. doi:10.1016/0036-9748(81)90148-4

    Article  Google Scholar 

  • Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge

    Google Scholar 

  • Geng WT, Freeman AJ, Wu R, Geller CB, Raynolds JE (1999) Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a \(\Sigma 5\) nickel grain boundary. Phys Rev B 60(10):7149–7155. doi:10.1103/PhysRevB.60.7149

    Article  Google Scholar 

  • Gerberich WW (2012) Modeling hydrogen induced damage mechanisms in metals. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge, pp 209–246

    Chapter  Google Scholar 

  • Gerberich WW, Marsh PG, Hoehn JW (1996) Hydrogen induced cracking mechanisms—are there critical experiments? In: Thompson AW, Moody NR (eds) Hydrogen effects in materials. TMS, Warrendale, PA, pp 539–551

    Google Scholar 

  • Hirth JP (1984) Theories of hydrogen induced cracking of steels. In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. American Society for Metals, Metal Park, pp 29–41

    Google Scholar 

  • Hirth JP (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11(6):861–890. doi:10.1007/BF02654700

    Article  Google Scholar 

  • Hirth JP, Rice JR (1980) On the thermodynamics of adsorption at interfaces as it influences decohesion. Metall Trans A 11(9):1501–1511. doi:10.1007/BF02654514

    Article  Google Scholar 

  • Holbrook JH, Cialone HJ, Collings EW, Drauglis EJ, Scott PM, Mayfield ME (2012) Control of hydrogen embrittlement of metals by chemical inhibitors and coatings. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge, pp 129–153

    Chapter  Google Scholar 

  • Hughes DA, Hansen N (2003) Deformation structures developing on fine scales. Philos Mag 83(31–34):3871–3893. doi:10.1080/14786430310001605560

    Article  Google Scholar 

  • Johnson WH (1874) On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc R Soc Lond 23:168–179. doi:10.1098/rspl.1874.0024

    Article  Google Scholar 

  • Jokl ML, Vitek V, McMahon CJ Jr (1980) A microscopic theory of brittle fracture in deformable solids: a relation between ideal work to fracture and plastic work. Acta Metall 28(11):1479–1488. doi:10.1016/0001-6160(80)90048-6

    Article  Google Scholar 

  • Jones RH (1990) Analysis of hydrogen-induced subcritical intergranular crack growth of iron and nickel. Acta Metall 38(9):1703–1718. doi:10.1016/0956-7151(90)90013-7

    Article  Google Scholar 

  • Keller C, Hug E, Retoux R, Feaugas X (2010) TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech Mater 42(1):44–54. doi:10.1016/j.mechmat.2009.09.002

    Article  Google Scholar 

  • Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater 55(15):5129–5138. doi:10.1016/j.actamat.2007.05.047

    Article  Google Scholar 

  • Kirchheim R (2014) Diffusion controlled thermal desorption spectroscopy (TDS). In: Steely hydrogen conference, proceedings, Ghent, Belgium, pp e01/237–e01/254

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  Google Scholar 

  • Lassila DH, Birnbaum HK (1986) The effect of diffusive hydrogen segregation on fracture of polycrystalline nickel. Acta Metall 34(7):1237–1243. doi:10.1016/0001-6160(86)90010-6

    Article  Google Scholar 

  • Lee TC, Robertson IM, Birnbaum HK (1990a) In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A 21(9):2437–2447. doi:10.1007/BF02646988

    Article  Google Scholar 

  • Lee TC, Robertson IM, Birnbaum HK (1990b) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62(1):131–153. doi:10.1080/01418619008244340

    Article  Google Scholar 

  • Li D, Gangloff RP, Scully JR (2004) Hydrogen trap states in ultrahigh-strength AERMET 100 steel. Metall Mater Trans A 35A:849–864

    Article  Google Scholar 

  • Lynch S (2011) Hydrogen embrittlement (HE) phenomena and mechanisms. In: Raja VS, Shoji T (eds) Stress corrosion cracking: theory and practice. Woodhead Publishing, Cambridge, pp 90–130

    Chapter  Google Scholar 

  • Martin ML, Fenske JA, Liu GS, Sofronis P, Robertson IM (2011a) On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Mater 59(4):1601–1606. doi:10.1016/j.actamat.2010.11.024

    Article  Google Scholar 

  • Martin ML, Robertson IM, Sofronis P (2011) Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approach. Acta Mater 59(9):3680–3687. doi:10.1016/j.actamat.2011.03.002

    Article  Google Scholar 

  • Martin ML, Sofronis P, Robertson IM, Awane T, Murakami Y (2013) A microstructural based understanding of hydrogen-enhanced fatigue of stainless steels. Int J Fatigue 57:28–36. doi:10.1016/j.ijfatigue.2012.08.009

    Article  Google Scholar 

  • Martin ML, Somerday BP, Ritchie RO, Sofronis P, Robertson IM (2012) Hydrogen-induced intergranular failure in nickel revisited. Acta Mater 60(6–7):2739–2745. doi:10.1016/j.actamat.2012.01.040

    Article  Google Scholar 

  • McNabb A, Foster PK (1963) A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227:618–627

    Google Scholar 

  • Moody NR, Robinson SL, Garrison WMJ (1990) Hydrogen effects on the properties and fracture modes of iron-based alloys. Res Mech 30(2):143–206

    Google Scholar 

  • Munroe PR (2009) The application of focused ion beam microscopy in the material sciences. Mater Charact 60(1):2–13. doi:10.1016/j.matchar.2008.11.014

    Article  Google Scholar 

  • Murakami Y, Kanezaki T, Mine Y (2010) Hydrogen effect against hydrogen embrittlement. Metall Mat Trans A 41(10):2548–2562. doi:10.1007/s11661-010-0275-6

    Article  Google Scholar 

  • Nagao A, Dadfarnia M, Robertson IM, Sofronis P (2015) Hydrogen embrittlement mechanisms. In: Totten GE, Colas R (eds) Encyclopedia of iron, steel, and their alloys. Taylor & Francis Group, New York, NY In Press

    Google Scholar 

  • Nagao A, Martin ML, Dadfarnia M, Sofronis P, Robertson IM (2014) The effect of nano-sized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel. Acta Mater 74:244–254. doi:10.1016/j.actamat.2014.04.051

    Article  Google Scholar 

  • Nagao A, Smith CD, Dadfarnia M, Sofronis P, Robertson IM (2014) Interpretation of hydrogen-induced fracture surface morphologies for lath martensitic steel. Procedia Mater Sci 3:1700–1705. doi:10.1016/j.mspro.2014.06.274

    Article  Google Scholar 

  • Nagao A, Smith CD, Dadfarnia M, Sofronis P, Robertson IM (2012) The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel. Acta Mater 60(13–14):5182–5189. doi:10.1016/j.actamat.2012.06.040

    Article  Google Scholar 

  • Novak P, Yuan R, Somerday BP, Sofronis P, Ritchie RO (2010) A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J Mech Phys Solids 58(2):206–226. doi:10.1016/j.jmps.2009.10.005

    Article  Google Scholar 

  • Ono K, Meshii M (1992) Hydrogen detrapping from grain boundaries and dislocations in high purity iron. Acta Metall Mater 40(6):1357–1364. doi:10.1016/0956-7151(92)90436-I

    Article  Google Scholar 

  • Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Metall 18(1):147–157. doi:10.1016/0001-6160(70)90078-7

    Article  Google Scholar 

  • Oriani RA, Josephic PH (1977) Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel. Acta Metall 25(9):979–988. doi:10.1016/0001-6160(77)90126-2

    Article  Google Scholar 

  • Rice JR, Wang J (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng A 107(1–2):23–40. doi:10.1016/0921-5093(89)90372-9

    Article  Google Scholar 

  • Robertson IM (2001) The effect of hydrogen on dislocation dynamics. Eng Fract Mech 68(6):671–692. doi:10.1016/S0013-7944(01)00011-X

    Article  Google Scholar 

  • Robertson IM, Birnbaum HK, Sofronis P (2009) Hydrogen effects on plasticity. In: Hirth JP, Kubin L (eds) Dislocations in solids. Elsevier, Oxford, pp 249–293

    Chapter  Google Scholar 

  • Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE (2015) Hydrogen embrittlement understood. Metall Mat Trans A 46(6):2323–2341. doi:10.1007/s11661-015-2836-1

    Article  Google Scholar 

  • San Marchi C, Somerday BP (2012) Technical reference for hydrogen compatibility of materials. SAND2012-7321, Sandia National Laboratories, Livermore, CA

  • Shih DS, Robertson IM, Birnbaum HK (1988) Hydrogen embrittlement of \(\upalpha \) titanium: in situ TEM studies. Acta Metall 36(1):111–124. doi:10.1016/0001-6160(88)90032-6

    Article  Google Scholar 

  • Shin KS, Meshii M (1983) Effect of sulfur segregation and hydrogen charging on intergranular fracture of iron. Acta Metall 31(10):1559–1566. doi:10.1016/0001-6160(83)90153-0

    Article  Google Scholar 

  • Smith E (1966) The nucleation and growth of cleavage microcracks in mild steel. In: Stickland AC (ed) Proceedings of conference on physical basis of yield and fracture. Institute of Physics and Physics Society, Oxford, pp 36–46

    Google Scholar 

  • Sofronis P, Birnbaum HK (1995) Mechanics of the hydrogen-dislocation-impurity interactions—I. Increasing shear modulus. J Mech Phys Solids 43(1):49–90. doi:10.1016/0022-5096(94)00056-B

    Article  Google Scholar 

  • Somerday BP, Sofronis P (eds) (2014) 2012 international hydrogen conference: hydrogen-materials interactions. ASME Press, New York, NY

    Google Scholar 

  • Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61(16):6153–6170. doi:10.1016/j.actamat.2013.07.001

    Article  Google Scholar 

  • Staykov A, Yamabe J, Somerday BP (2014) Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface. Int J Quantum Chem 114(10):626–635. doi:10.1002/qua.24633

    Article  Google Scholar 

  • Stull DR, Prophet H (1971) JANAF thermochemical tables. 2nd edn. National Standard Reference Data System

  • Suresh S, Ritchie RO (1982) Mechanistic dissimilarities between environmentally influenced fatigue-crack propagation at near-threshold and higher growth rates in lower strength steels. Metal Sci 16(11):529–538. doi:10.1179/msc.1982.16.11.529

    Article  Google Scholar 

  • Suzuki H, Takai K (2012) Summary of round-robin tests for standardizing hydrogen analysis procedures. ISIJ Int 52:174–180. doi:10.2355/isijinternational.52.174

    Article  Google Scholar 

  • Takai K (2011) Hydrogen existing states and hydrogen embrittlement. Correl Eng 60(5):230–235. doi:10.3323/jcorr.60.230

    Article  Google Scholar 

  • Takano S, Suzuki T (1974) An electron-optical study of \(\upbeta \)-hydride and hydrogen embrittlement of vanadium. Acta Metall 22(3):265–274. doi:10.1016/0001-6160(74)90166-7

    Article  Google Scholar 

  • Thompson AW, Bernstein IM (1980) Metallurgical variables in environmental fracture. In: Fontana MG, Staehle R (eds) Advances in corrosion science and technology. Plenum Publishing, New York, pp 53–175

    Chapter  Google Scholar 

  • Yamaguchi T, Nagumo M (2003) Simulation of hydrogen thermal desorption under reversible trapping by lattice defects. ISIJ Int 43:514–519

  • Wang S, Martin ML, Robertson IM, Sofronis P (2015) Effect of hydrogen environment on the separation of Fe grain boundaries. Acta Mater (under review)

  • Wang S, Martin ML, Sofronis P, Ohnuki S, Hashimoto N, Robertson IM (2014) Hydrogen-induced intergranular failure of iron. Acta Mater 69:275–282. doi:10.1016/j.actamat.2014.01.060

  • Wei F-G, Enomoto M, Tsuzaki K (2012) Applicability of the Kissinger’s formula and comparison with the McNabb–Foster model in simulation of thermal desorption spectrum. Comput Mater Sci 51:322–330. doi:10.1016/j.commatsci.2011.07.009

    Article  Google Scholar 

  • Wei FG, Tsuzaki K (2006) Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall Mater Trans A 37A:331–353. doi:10.1007/s11661-006-0004-3

    Article  Google Scholar 

  • Wu R, Freeman AJ, Olson GB (1994) First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 265(5170):376–380. doi:10.1126/science.265.5170.376

    Article  Google Scholar 

  • Yamaguchi T, Nagumo M (2003) Simulation of hydrogen thermal desorption under reversible trapping by lattice defects. ISIJ Int 43:514–519. doi:10.2355/isijinternational.43.514

    Article  Google Scholar 

  • Zhong L, Wu R, Freeman AJ, Olson GB (2000) Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron. Phys Rev B 62(21):13938–13941. doi:10.1103/PhysRevB.62.13938

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the DOE EERE Fuel Cells program through Grant GO 15045. M.D., A.N., S.W., B.P.S., and P.S. acknowledge the support from the World Premier International Research Center Initiative (WPI), MEXT, Japan, through the International Institute for Carbon-Neutral Energy Research (I2CNER) of Kyushu University. S.W. acknowledges support from the National Science Foundation through Award No. CMMI-1406462. The authors would also like to acknowledge Prof. I.M. Robertson at the University of Wisconsin-Madison for his guidance, support and discussions. Also, the authors acknowledge K.E. Nygren at the University of Wisconsin-Madison for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Sofronis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadfarnia, M., Nagao, A., Wang, S. et al. Recent advances on hydrogen embrittlement of structural materials. Int J Fract 196, 223–243 (2015). https://doi.org/10.1007/s10704-015-0068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0068-4

Keywords

Navigation