Skip to main content
Log in

An incremental stress state dependent damage model for ductile failure prediction

  • IUTAM Paris 2015
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The goal of this contribution is to formally present an incremental damage model conceived to predict failure of ductile materials in forming and crash applications. Denoted henceforth by the acronym Generalized Incremental Stress State Dependent Damage Model (GISSMO), the present model’s framework is based on an incremental damage accumulation which is dependent on a failure curve which, in turn, is a function of the current stress state. The damage variable is of scalar nature and inherently takes into account the effects of non-proportional loadings. Furthermore, GISSMO includes the evolution of an instability measure based on a critical strain. When this variable reaches unity, the coupling between the stress tensor and the damage variable is considered. This allows capturing the effects in post-critical regime macroscopically, from strain localization to final element erosion and crack formation. Since spurious mesh dependence is a concern when simulating material behavior up to fracture, a regularization strategy is proposed to compensate for the effects of mesh dependence in a global fashion. The aforementioned aspects of GISSMO are presented and discussed in detail in the present contribution as well as the calibration of the model based on experimental data of a dual-phase steel. It is shown that GISSMO is able to reproduce the fracture behavior of the calibrated material for several load paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Andrade FXC (2011) Non-local modelling of ductile damage: formulation and numerical issues. Ph.D. thesis, University of Porto

  • Andrade F, Feucht M, Haufe A (2014) On the prediction of material failure in LS-DYNA: a comparison between GISSMO and DIEM. In: Proceedings of the 13th international LS-DYNA users conference. Detroit

  • Andrieux F, Sun D-Z, Feucht M (2013) Effect of stress state on the failure behavior of a dual phase steel. In: Proceedings of 19th international symposium on plasticity and its current applications

  • Bai Y (2008) Effect of loading history on necking and fracture. Ph.D. thesis, Department of Ocean Engineering, Massachusetts Institute Technology

  • Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98

    Article  Google Scholar 

  • Bao Y, Wierzbicki T (2004) A comparative study on various ductile crack formation criteria. J Eng Mater Technol 126:24–314

    Article  Google Scholar 

  • Barsoum I, Faleskog J (2007) Rupture mechanisms in combined tension and shear: experiments. Int J Solids Struct 44:1768–1786

    Article  Google Scholar 

  • Basaran M (2011) Stress state dependent damage modeling with a focus on the Lode angle influence. 2011. Ph.D. thesis, RWTH Aachen

  • Belytschko T, Liu WK, Doghri I (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    Google Scholar 

  • Bressan JD, Williams JA (1983) The use of a shear instability criterion to predict local necking in sheet metal deformation. Int J Mech Sci 25:155–168

    Article  Google Scholar 

  • Bridgman PW (1952) Studies in large flow and fracture. McGraw-Hill, New York

    Google Scholar 

  • Cervera M, Chiumenti M, Agelet de Saracibar C (2004) Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity. Int J Numer Anal Methods Geomech 28:373–393

    Article  Google Scholar 

  • Cervera M, Chiumenti M (2009) Size effect and localization in J2 plasticity. Int J Solids Struct 46:3301–3312

    Article  Google Scholar 

  • Cesar de Sa JMA, Areias PMA, Zheng C (2006) Damage modelling in metal forming problems using an implicit non-local gradient model. Comput Methods Appl Mech Eng 195:6646–6660

    Article  Google Scholar 

  • De Borst R, Mühlhaus H (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35:521–539

    Article  Google Scholar 

  • De Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, New York

    Book  Google Scholar 

  • Dunand M, Mohr D (2011) On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode angles. J Mech Phys Solids 59:1374–1394

    Article  Google Scholar 

  • Effelsberg J, Haufe A, Feucht M, Neukamm F, DuBois P (2012) On the parameter identification for the GISSMO damage model. In: Proceedings of the 12th international LS-DYNA users conference. Detroit

  • Feucht F (1999) Ein gradientenabhängiges Gursonmodell zur Beschreibung duktiler Schädigung mit Entfestigung. Ph.D. thesis, Technische Universität Darmstadt (in German)

  • Feucht M, Haufe A (2013) Crashsimulationen und der Einfluss der Umformgeschichte auf das Strukturverhalten. In: Proceedings of forming technology forum. Munich

  • Feucht M, Neukamm F, Haufe A (2011) A phenomenological damage model to predict material failure in crashworthiness applications. In: Recent developments and innovative applications in computational mechanics, Festschrift for Professor Wriggers 60th Birthday, Eds: Müller-Hoppe, Löhnert, Reese, ISBN 978-3-642-17484-1

  • Feucht M, Sun D-Z, Erhart T, Frank T (2006) Recent development and applications of the Gurson model. In: Proceedings of the 5th German LS-DYNA forum. Ulm

  • Geers MGD, Ubachs RLJM, Engelen RAB (2003) Strongly non-local gradient-enhanced finite strain elastoplasticity. Int J Numer Methods Eng 56:2039–2068

    Article  Google Scholar 

  • Ghahremaninezhad A, Ravi-Chandar K (2013) Crack nucleation from a notch in a ductile material under shear dominant loading. Int J Fract 184(1):253–266

    Article  Google Scholar 

  • Ghahremaninezhad A, Ravi-Chandar K (2013) Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading. Int J Fract 180:23–39

    Article  Google Scholar 

  • Gologanu M, Leblond JB, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids: case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  Google Scholar 

  • Graf AF, Hosford WF (1993) Calculations of forming limit diagrams for changing strain paths. Metall Mater Trans A 24:2497–2501

    Article  Google Scholar 

  • Graf AF, Hosford WF (1994) The influence of strain-path changes on forming limit diagrams of Al6111-T4. Int J Mech Sci 36:897–910

    Article  Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15

    Article  Google Scholar 

  • Haufe A, Andrade F, Feucht M, Neukamm F, DuBois P (2014) The forming-to-crash simulation process chain: new challenges and efficient modeling techniques. In: Proceedings of the international conference “new developments in sheet metal forming”. Fellbach

  • Haufe A, Feucht M (2009) The challenge to predict material failure in crashworthiness applications: simulation of producibility to serviceability. In: Festschrift zum 60. Geburtstag von Professor Klaus Thoma, Hrsg. S. Hiermaier, EMI, Freiburg

  • Hill R (1952) On discontinuous plastic states with special reference to localized necking in thin sheets. J Mech Phys Solids 1:19–30

    Article  Google Scholar 

  • Jirásek M (1998) Nonlocal models for damage and fracture: comparison of approaches. Int J Solids Struct 35:4133–4145

    Article  Google Scholar 

  • Jirásek M (2007) Nonlocal damage mechanics. Rev Eur de Génie Civ 11:993–1021

    Article  Google Scholar 

  • Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48

    Article  Google Scholar 

  • Kleemola HJ, Pelkkinkangas MT (1977) Effect of predeformation and strain path on the forming limits of steel, copper and brass. Sheet Met Ind 63:559–591

    Google Scholar 

  • Laukonis JV, Ghosh AK (1978) Effects of strain path changes on the formability of sheet metals. Metall Trans 9A:1849–1856

    Article  Google Scholar 

  • Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89

    Article  Google Scholar 

  • Lemaitre J (1996) A course on damage mechanics. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • LTSC (2015a) LS-DYNA theory manual. Livermore

  • LTSC (2015b) LS-DYNA keyword user’s manual volume II: material models. Livermore

  • Mackenzie AC, Hancock JW, Brown DK (1977) On the influence of state of stress on ductile failure initiation in high strength steels. Eng Fract Mech 9:167–188

    Article  Google Scholar 

  • Madou K, Leblond J-B (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids–I: limit-analysis of some representative cell. J Mech Phys Solids 60(5):1020–1036

    Article  Google Scholar 

  • Malcher L, Andrade Pires FM, Cesar de Sa JMA (2014) An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228

    Article  Google Scholar 

  • Marciniak Z, Kuczynski K (1967) Limit strains in processes of stretch forming sheet metal. J Mech Sci 9:609–620

    Article  Google Scholar 

  • McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35(2):363–371

    Article  Google Scholar 

  • Müschenborn W, Sonne H (1975) Influence of the strain path on the forming limits of sheet metal. Arch für das Eisenhüttenwesen 46(9):597–602

    Google Scholar 

  • Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solids 27:1–17

    Article  Google Scholar 

  • Neukamm F, Feucht M, Haufe A (2009) Considering damage history in crashworthiness simulations. In: Proceedings of the 7th European LS-DYNA users conference. Salzburg

  • Neukamm F, Feucht M, Haufe A, Roll K (2008) On closing the constitutive gap between forming and crash simulation. In: Proceedings of the 10th international LS-DYNA users conference. Detroit

  • Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512

    Article  Google Scholar 

  • Pijaudier-Cabot G, Bazant ZP, Tabbara M (1988) Comparison of various models for strain softening. Eng Comput 5:141–150

    Article  Google Scholar 

  • Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    Article  Google Scholar 

  • Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217

    Article  Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    Google Scholar 

  • Stoughton TB (2000) A general forming limit criterion for sheet metal forming. Int J Mech Sci 42:1–27

    Article  Google Scholar 

  • Stoughton TB (2001) Stress-based forming limits in sheet metal forming. J Eng Mater Technol 123:417–422

    Article  Google Scholar 

  • Stoughton TB, Zhu X (2004) Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD. Int J Plast 20:1463–1486

    Article  Google Scholar 

  • Sun D-Z, Ockewitz A (2013) Testing and modeling of deformation and damage behavior of thick-walled aluminum profiles for crash simulation. In: Proceedings of international congress on light materials: science and technology LightMAT 2013. Deutsche Gesellschaft für Materialkunde e.V., Frankfurt a.M

  • Sun D-Z, Ockewitz A, Falkinger G, Andrieux F (2013) Characterization and modeling of the deformation and damage behavior of thick-walled aluminum profiles. In: Proceedings of 8th world conference aluminium two thousand. Interall Srl, Modena

  • Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1:1–18

    Article  Google Scholar 

  • Tasan CC (2010) Micro-mechanical characterization of ductile damage in sheet metal. Ph.D. thesis, Eindhoven University of Technology

  • Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 157:55–69

    Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  • Volk W, Suh J (2014) Prediction of formability for non-linear deformation history using generalized forming limit concept. In: Proceedings of NUMISHEET 2014, p 556–561

  • Volk W, Weiss H, Jocham D, Suh J (2013) Phenomenological and numerical description of localized necking using generalized forming limit concept. In: Proceedings of IDDRG 2013, p 16–21

  • Walters CL (2014) Framework for adjusting for both stress triaxiality and mesh size effect for failure of metals in shell structures. Int J Crashworth 19(1):1–12

    Article  Google Scholar 

  • Weck A (2007) The role of coalescence on ductile fracture. Ph.D. thesis, McMaster University, Hamilton

  • Wierzbicki T, Xue L (2005) On the effect of the third invariant of the stress deviator on ductile fracture. Technical report, Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, Cambridge

  • Xue L (2007) Ductile fracture modeling: theory, experimental investigation and numerical verification. Ph.D. thesis, Massachusetts Institute Technology, Cambridge

  • Zeng D, Chappuis L, Xia ZC, Zhu X (2008) A path independent forming limit criterion for sheet metal forming simulations. SAE Technical Paper Series 2008-01-1445

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. C. Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, F.X.C., Feucht, M., Haufe, A. et al. An incremental stress state dependent damage model for ductile failure prediction. Int J Fract 200, 127–150 (2016). https://doi.org/10.1007/s10704-016-0081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0081-2

Keywords

Navigation