Skip to main content
Log in

Geometry and material constraint effects on fracture resistance behavior of bi-material interfaces

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The finite element method based on GTN ductile damage mechanics model has been used to investigate the interaction effects of geometry and material constraints on fracture resistance behavior of bi-material interfaces. The geometry constraint is changed by changing the specimen width W, and the material constraint is changed by changing the work hardening mismatch. The main findings of this work are that the material constraint effect on fracture resistance of bi-material interfaces is related to geometry constraint, and there exists interaction between them. For lower geometry constraint, the material constraint effect on fracture resistance is insignificant. Under the condition of middle geometry constraint, the material constraint effect on fracture resistance is the most significant. With further increasing geometry constraint, the fracture resistance behavior of the interfaces is gradually dominated by the higher geometry constraint, and the material constraint effect becomes weaken. These results are analyzed by the stress triaxiality levels ahead of crack tips and crack path deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • An GB, Ohata M, Mochizuki M, Bang HS, Toyoda M (2005) Effect of strength mismatch on ductile crack initiation behavior from notch root under static loading. Key Eng Mater 297:756–761

    Article  Google Scholar 

  • ASTM E1820-08a (2008) Standard test method for measurement of fracture toughness. American Society of Testing and Materials, Philadelphia

  • Brocks W, Schmitt W (1993) Second parameter in \(J\)\(R\) curves: constraint or triaxiality. In: Proceedings of the 1993 conference on constraint effects in fracture: theory and applications. ASTM, Dallas (USA)

  • Burstow MC, Howard IC, Ainsworth RA (1998) The influence of constraint on crack tip stress fields in strength mismatched welded joints. J Mech Phys Solids 46:845–872

    Article  Google Scholar 

  • Benseddiq N, Imad A (2008) A ductile fracture analysis using a local damage model. Int J Press Vessel Pip 85:219–227

    Article  Google Scholar 

  • Cetinel H, Uyulgan B, Aksoy T (2004) The effect of yield strength mismatch on the fracture behavior of welded nodular cast iron. Mater Sci Eng 387:357–360

    Article  Google Scholar 

  • Cetinel H, Aksoy T (2008) The effect of undermatching on crack tip constraint in a welded structure of nodular irons. J Mater Proc Technol 198:183–190

    Article  Google Scholar 

  • Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102:249–256

    Article  Google Scholar 

  • Dutta BK, Guin S, Sahu MK, Samal MK (2008) A phenomenological form of the \(\text{ q }_{2}\) parameter in the Gurson model. Int J Press Vessels Pip 85:199–210

    Article  Google Scholar 

  • Fan K, Wang GZ, Yang J, Xuan FZ, Tu ST (2015a) Numerical analysis of constraint and strength mismatch effects on local fracture resistance of bimetallic joints. AMM 750:24–31

    Article  Google Scholar 

  • Fan K, Wang GZ, Yang J, Xuan FZ, Tu ST (2015b) Effects of work hardening mismatch on fracture resistance behavior of bi-material interface regions. Mater Des 68:186–194

    Article  Google Scholar 

  • Fan K, Wang GZ, Yang J, Xuan FZ, Tu ST (2015c) Local fracture resistance behavior of interface regions in a dissimilar metal welded joint. Eng Frac Mech 136:279–291

    Article  Google Scholar 

  • Gurson AL (1997) Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. Eng Mater Tech 99:2–15

    Article  Google Scholar 

  • Kirk MT, Dodds RH (1992) The influence of weld strength mismatch on crack-tip constraints in single edge notch bend specimens. Report Univ. of Illinois Urbana, Structural Research Series No. 568

  • Lee H, Kim YJ (2001) Interfacial crack-tip constraints and J-integral in plastically mismatched bi-materials. Eng Frac Mech 68:1013–1031

    Article  Google Scholar 

  • Lee H, Kim YJ (2007) Interfacial crack-tip constraints and J-integral for bi-materials with plastic hardening mismatch. Int J Fract 143:231–243

    Article  Google Scholar 

  • Li ZH, Guo WL (2002) The influence of plasticity mismatch on the growth coalescence of spheroidal voids on the biomaterial interface. Int J Plast 18:249–279

    Article  Google Scholar 

  • Morrison J, Gough JP (1989) Specimen size and orientation effects on the toughness of steel weldments. J Eng Mater Technol 111:270–277

    Article  Google Scholar 

  • Mathias LLS, Sarzosa DFB, Ruggieri C (2013) Effects of specimen geometry and loading mode on crack growth resistance curves of a high-strength pipeline girth weld. Int J Press Vessels Pip 111:106–119

    Article  Google Scholar 

  • Negre P, Steglich D, Brocks W (2005) Crack extension at an interface: prediction of fracture toughness and simulation of crack path deviation. Int J Fract 134:209–229

    Article  Google Scholar 

  • Negre P, Steglich D, Brocks W (2004) Crack extension in aluminium welds: a numerical approach using the Gurson–Tvergaard–Needleman model. Eng Fract Mech 71:2365–2383

    Article  Google Scholar 

  • Østby E, Zhang ZL, Thaulow C (2001) Constraint effect on the near tip stress fields due to difference in plastic work hardening for bi-material interface cracks in small scale yielding. Int J Fract 111:87–103

    Article  Google Scholar 

  • Østby E, Thaulow C, Zhang ZL (2007) Numerical simulation of specimen size and mismatch effects in ductile crack growth-Part I: tearing resistance and crack growth paths. Eng Frac Mech 74:1770–1792

    Article  Google Scholar 

  • Penuelas I, Betegon C, Rodriguez C (2006) A ductile failure model applied to the determination of the fracture toughness of welded joints. Numerical simulation and experimental validation. Eng Fract Mech 73:2756–2773

    Article  Google Scholar 

  • Ranestad Ø, Zhang ZL, Thaulow C (1999) Quantification of geometry and material mismatch constraint in steel weldments with fusion line cracks. Int J Fract 99:211–237

    Article  Google Scholar 

  • Rakin M, Medjo B, Gubeljak N, Sedmak A (2013) Micromechanical assessment of mismatch effects on fracture of high-strength low alloyed steel welded joints. Eng Frac Mech 109:221–235

    Article  Google Scholar 

  • Rakin M, Gubeljak N, Dobrojevic M, Sedmak A (2008) Modelling of ductile fracture initiation in strength mismatched welded joint. Eng Fract Mech 75:3499–3510

    Article  Google Scholar 

  • Shi YW, Han ZX (1993) The effects of crack depth on the J-integral and CTOD fracture toughness for welded bend specimens. Fatigue Fract Eng Mater Struct 16:281–287

    Article  Google Scholar 

  • Shi YW, Sun SY (1997) Geometry effect of welded joints on failure assessment curves. Int J Press Vessels Pip 74:71–76

    Article  Google Scholar 

  • Sun HM, Wang GZ, Xuan FZ (2009) Numerical simulation of the ductile crack growth in a weld joint. In: Proceedings of 12th international conference on pressure vessel technology, Jeju, Korea

  • Samal MK, Balani K, Seidenfuss M (2009) An experiment and numerical investigation of fracture resistance behavior of a dissimilar metal welded joint. Mech Eng Sci 223:1507–1522

    Article  Google Scholar 

  • Tang W, Shi YW (1986) Influence of crack depth and strength matching on deformation and plastic zone for welded joint specimen. Int J Fract 74:77–87

    Article  Google Scholar 

  • Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  • Wang HT, Wang GZ, Xuan FZ, Tu ST (2011) Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint. Nucl Eng Des 241:3234–3243

    Article  Google Scholar 

  • Wang HT, Wang GZ, Xuan FZ, Liu CJ, Tu ST (2103a) Local mechanical properties of a dissimilar metal welded joint in nuclear power systems. Mater Sci Eng 568:108–117

    Article  Google Scholar 

  • Wang HT (2013) Mechanical property and local fracture behavior of dissimilar metal welded joint in nuclear power. Ph.D. Thesis, East China University of Science and Technology

  • Wang HT, Wang GZ, Xuan FZ, Tu ST (2013b) An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint. Mater Des 44:179–189

    Article  Google Scholar 

  • Yang J, Wang GZ, Xuan FZ, Tu ST, Liu CJ (2014a) An experimental investigation of in-plane constraint effect on local fracture resistance of a dissimilar metal welded joint. Mater Des 53:611–619

    Article  Google Scholar 

  • Yang J, Wang GZ, Xuan FZ, Tu ST, Liu CJ (2014b) Out-of-plane constraint effect on local fracture resistance of a dissimilar metal welded joint. Mater Des 55:542–550

    Article  Google Scholar 

  • Younise B, Sedmak A, Rakin M, Gubeljak N, Medjo B, Burzic M et al (2012) Micromechanical analysis of mechanical heterogeneity effect on the tearing of weldments. Mater Des 37:193–201

    Article  Google Scholar 

  • Yoshida K (1990) Fracture toughness of weld metals in steel piping for nuclear power plants. Int J Press Vessels Pip 43:273–284

    Article  Google Scholar 

  • Zhang ZL, Hauge M, Thaulow C (1996) Two-parameter characterization of the near-tip stress fields for a bi-material elastic–plastic interface crack. Int J Fract 79:65–83

    Article  Google Scholar 

  • Zerbst U, Ainsworth RA, Beier HTh, Pisarski H, Zhang ZL, Nikbin K et al (2014) Review on fracture and crack propagation in weldments—a fracture mechanics perspective. Eng Fract Mech 132:200–276

    Article  Google Scholar 

  • Zhang ZL, Thaulow C, Ødegard J (2000) A complete Gurson model approach for ductile fracture. Eng Fract Mech 67:155–168

    Article  Google Scholar 

  • Zhang ZL (1996) A sensitivity analysis of material parameters for the Gurson constitutive model. Fatigue Fract Eng Mater Struct 19:561–570

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Projects of the National Natural Science Foundation of China (51575184, 51375165, 51325504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Z. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, K., Wang, G.Z., Tu, S.T. et al. Geometry and material constraint effects on fracture resistance behavior of bi-material interfaces. Int J Fract 201, 143–155 (2016). https://doi.org/10.1007/s10704-016-0112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0112-z

Keywords

Navigation