Skip to main content
Erschienen in: Geotechnical and Geological Engineering 2/2015

01.04.2015 | Original paper

Thermal Property Measurements of Stratigraphic Units with Modeled Implications for Expected Performance of Vertical Ground Source Heat Pumps

verfasst von: Matthew D. Walker, Lauren L. Meyer, James M. Tinjum, David J. Hart

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ground temperature and lithology influence ground source heat pump (GSHP) performance; however, typical design for residential systems uses estimated handbook values that are not necessarily representative of local geology. The incorporation of true ground temperature and thermal property measurements into design models would yield a more optimal design and thus decrease life cycle cost. A two-part study was conducted, first focusing on recording thermal properties of specific lithofacies in a particular region (Wisconsin, USA), then modeling how these measurements could change expected GSHP design and performance in a typical residential setting. Representative sedimentary, igneous, and metamorphic rocks from Wisconsin were characterized using guarded-comparative-longitudinal heat flow experiments (ASTM E1225), calorimetry, and weight-volume assessments. X-ray diffraction was also performed on some samples to assess the effect of mineralogy. Across all rock types, thermal conductivity ranged from 1.84 to 6.71 W m−1 K−1, and specific heat capacity ranged from 713 to 891 J kg−1 K−1. The indexed values were used to construct a hypothetical vertical heat exchange loop penetrating vertically consecutive Paleozoic strata. The hypothetical loop was examined using the rate of system temperature drop under full load as a measure of performance during the heating season. Expected system performance was compared between commonly cited thermal conductivity values of their general lithologies (e.g. sandstone, dolomite, shale) and the laboratory-measured thermal properties of the specific formations. Thermal conductivity indexed by general lithology proved to be insufficient as a design parameter to generate accurate assessments of GSHP performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASHRAE (2011) Geothermal energy. In: ASHRAE handbook—HVAC applications, SI-edition. ASHRAE, p 34.10–34.20 ASHRAE (2011) Geothermal energy. In: ASHRAE handbook—HVAC applications, SI-edition. ASHRAE, p 34.10–34.20
Zurück zum Zitat ASTM Standard E1225 (2009) Standard test method of thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique. ASTM Int West Conshohocken. doi:10.1520/E1225-09 ASTM Standard E1225 (2009) Standard test method of thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique. ASTM Int West Conshohocken. doi:10.​1520/​E1225-09
Zurück zum Zitat Blackwell DD, Negraru PT, Richards MC (2007) Assessment of the enhanced geothermal system resource base of the United States. Nat Resour Res 15(4):283–308CrossRef Blackwell DD, Negraru PT, Richards MC (2007) Assessment of the enhanced geothermal system resource base of the United States. Nat Resour Res 15(4):283–308CrossRef
Zurück zum Zitat Brown BA, Massie-Ferch K, Peters RM (2013) Preliminary geologic cross sections of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison Brown BA, Massie-Ferch K, Peters RM (2013) Preliminary geologic cross sections of Dane County, Wisconsin. Wisconsin Geological and Natural History Survey, Madison
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, New York Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, New York
Zurück zum Zitat Clauser C, Huenges E (1995) Thermal condcutivity of rocks and minerals. In: Ahrens T (ed) Rock physics and phase relations—handbook of physical constants, vol 3. AGU Reference Shelf, Washington, pp 105–126CrossRef Clauser C, Huenges E (1995) Thermal condcutivity of rocks and minerals. In: Ahrens T (ed) Rock physics and phase relations—handbook of physical constants, vol 3. AGU Reference Shelf, Washington, pp 105–126CrossRef
Zurück zum Zitat Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans Am Geophys Union 27:526–534CrossRef Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans Am Geophys Union 27:526–534CrossRef
Zurück zum Zitat Dean R, Dixon W (1951) Simplified statistics for small numbers of observations. Anal Chem 23(4):636–638 Dean R, Dixon W (1951) Simplified statistics for small numbers of observations. Anal Chem 23(4):636–638
Zurück zum Zitat Dickie E (2010) Energy exchange: geothermal exchange and beyond, 3rd edn. Lake Cove, Canada Dickie E (2010) Energy exchange: geothermal exchange and beyond, 3rd edn. Lake Cove, Canada
Zurück zum Zitat Dittus FW, Boelter LMK (1985) Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf 12(1):3–22CrossRef Dittus FW, Boelter LMK (1985) Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf 12(1):3–22CrossRef
Zurück zum Zitat Dott RH, Attig JW (2004) Roadside geology of Wisconsin. Mountain Press Publishing, Missoula Dott RH, Attig JW (2004) Roadside geology of Wisconsin. Mountain Press Publishing, Missoula
Zurück zum Zitat Figliola RS, Beasley DE (2000) Theory and design for mechanical measurements, 3rd edn. Wiley, New York Figliola RS, Beasley DE (2000) Theory and design for mechanical measurements, 3rd edn. Wiley, New York
Zurück zum Zitat Gehlin SEA, Hellström G (2003) Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew Energy 28:2221–2238CrossRef Gehlin SEA, Hellström G (2003) Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew Energy 28:2221–2238CrossRef
Zurück zum Zitat Incropera FP, DeWitt DP (2002) Internal flow. Fundamentals of heat and mass transfer, 5th edn. Wiley, New York, pp 466–509 Incropera FP, DeWitt DP (2002) Internal flow. Fundamentals of heat and mass transfer, 5th edn. Wiley, New York, pp 466–509
Zurück zum Zitat Ingersoll LR, Zobel OJ, Ingersoll AC (1948) Heat conduction with engineering and geological application. University of Wisconsin Press, Madison Ingersoll LR, Zobel OJ, Ingersoll AC (1948) Heat conduction with engineering and geological application. University of Wisconsin Press, Madison
Zurück zum Zitat Jaupart C, Mareschel J (2011) Heat generation and transport in the earth. Cambridge University Press, New York Jaupart C, Mareschel J (2011) Heat generation and transport in the earth. Cambridge University Press, New York
Zurück zum Zitat Kavanaugh S, Rafferty K, Geshwiler M (1997) Ground-source heat pumps: design of geothermal systems for commercial and institutional buildings. American society of heating, refrigerating and air-conditioning engineers Kavanaugh S, Rafferty K, Geshwiler M (1997) Ground-source heat pumps: design of geothermal systems for commercial and institutional buildings. American society of heating, refrigerating and air-conditioning engineers
Zurück zum Zitat Liebel HT, Huber K, Frengstad BS, Ramstad RK, Brattli B (2010a) Rock core samples cannot replace thermal response tests—a statistical comparison based on thermal conductivity data from the Oslo Region (Norway). In: Proceedings of renewable energy research conference 2010, Trondheim, Norway, p 10 Liebel HT, Huber K, Frengstad BS, Ramstad RK, Brattli B (2010a) Rock core samples cannot replace thermal response tests—a statistical comparison based on thermal conductivity data from the Oslo Region (Norway). In: Proceedings of renewable energy research conference 2010, Trondheim, Norway, p 10
Zurück zum Zitat Liebel HT, Huber K, Brattli B, Frengstad B (2010b) Can rock core thermal conductivity data replace thermal response tests?. In: Proceedings of water and energy conference 2010, Amsterdam, Netherlands, p 8 Liebel HT, Huber K, Brattli B, Frengstad B (2010b) Can rock core thermal conductivity data replace thermal response tests?. In: Proceedings of water and energy conference 2010, Amsterdam, Netherlands, p 8
Zurück zum Zitat Liebel HT, Stølen MS, Frengstad BS, Ramstad RK, Brattli B (2012) Insights into the reliability of different thermal conductivity measurement techniques: a thermo-geological study in Mære (Norway). Bull Eng Geol Environ 71(2):235–243CrossRef Liebel HT, Stølen MS, Frengstad BS, Ramstad RK, Brattli B (2012) Insights into the reliability of different thermal conductivity measurement techniques: a thermo-geological study in Mære (Norway). Bull Eng Geol Environ 71(2):235–243CrossRef
Zurück zum Zitat Lund JW (1990) Geothermal heat pump utilization in the United States. Geo-heat center Lund JW (1990) Geothermal heat pump utilization in the United States. Geo-heat center
Zurück zum Zitat Lund J, Sanner B, Rybach L, Curtis R, Hellström G (2004) Geothermal (ground-source) heat pumps—a world overview. GHC Bull 25(3):1–10 Lund J, Sanner B, Rybach L, Curtis R, Hellström G (2004) Geothermal (ground-source) heat pumps—a world overview. GHC Bull 25(3):1–10
Zurück zum Zitat Meyer L (2013) Thermophysical properties of Wisconsin rocks for application in geothermal energy. MS Thesis, University of Wisconsin-Madison Meyer L (2013) Thermophysical properties of Wisconsin rocks for application in geothermal energy. MS Thesis, University of Wisconsin-Madison
Zurück zum Zitat Somerton WH (1992) Thermal properties and temperature-realted behavior of rock/fluid systems. Elsevier, Amsterdam Somerton WH (1992) Thermal properties and temperature-realted behavior of rock/fluid systems. Elsevier, Amsterdam
Zurück zum Zitat Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Trans Am Geophys Union 16:519–524CrossRef Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Trans Am Geophys Union 16:519–524CrossRef
Zurück zum Zitat Touloukian Y, Judd W, Roy R (1981) Physical Properties of Rocks and Minerals. Vol. 2. McGraw Hill Companies. Touloukian Y, Judd W, Roy R (1981) Physical Properties of Rocks and Minerals. Vol. 2. McGraw Hill Companies.
Zurück zum Zitat Witte HJL (2013) Error analysis of thermal response tests. Appl Energy 109:302–311CrossRef Witte HJL (2013) Error analysis of thermal response tests. Appl Energy 109:302–311CrossRef
Metadaten
Titel
Thermal Property Measurements of Stratigraphic Units with Modeled Implications for Expected Performance of Vertical Ground Source Heat Pumps
verfasst von
Matthew D. Walker
Lauren L. Meyer
James M. Tinjum
David J. Hart
Publikationsdatum
01.04.2015
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 2/2015
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-015-9847-y

Weitere Artikel der Ausgabe 2/2015

Geotechnical and Geological Engineering 2/2015 Zur Ausgabe