Skip to main content
Erschienen in: Geotechnical and Geological Engineering 2/2015

01.04.2015 | Original paper

Numerical Simulation of Induced Seismicity in Carbon Capture and Storage Projects

verfasst von: Kimia Mortezaei, Farshid Vahedifard

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon capture and storage (CCS) technology offers a promising solution to control and reduce CO2 emissions. Changes in pore fluid pressure within the injection zone can induce low-magnitude seismic events. The induced seismicity associated with CCS needs to be properly addressed in order to obtain public acceptance for the technology and also to prevent possible CO2 leakage from the storage site due to fractures or fault-slip in the faults which can be reactivated due to injection. Simulation of CO2 injection inherently poses a multi-physics problem coupling thermal, hydrologic, and geomechanical processes. In this paper, a set of 2D coupled thermo-hydro-mechanical modeling was performed to simulate stress changes and resulting geomechanical deformations in the reservoir, caprock and fault due to CO2 injection. The model included a limited-dimension pre-existing fault which cannot be easily detected by surveys. The fault slip obtained from the numerical model was then used along with seismological theories to estimate the maximum magnitude of induced earthquake. A parametric study was performed to investigate the effects of reservoir properties as well as thermal stresses on geomechanical deformation, fault slip, pore pressure generation versus time, rupture time, and magnitude of induced events. The effects of permeability, porosity, and thickness of the reservoir were discussed. It was shown that thinner reservoirs have higher probability of fault reactivation and will result in larger induced seismic events. Reservoirs with higher porosity were shown to have longer rupture time and induce larger events. A higher permeable reservoir can decrease the potential of fault reactivation by generating lower buildup pore pressure and smaller fault slip. In general, for the given model geometry and injection characteristics, the heat flux never reached the fault by the time that the fault slip occurred and had no apparent effect on the results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abercrombie RE (1995) Earthquake source scaling relationships from–1 to 5 ML using seismograms recorded at 2.5-km depth. J Geophys Res Solid Earth 100(B12):24015–24036CrossRef Abercrombie RE (1995) Earthquake source scaling relationships from–1 to 5 ML using seismograms recorded at 2.5-km depth. J Geophys Res Solid Earth 100(B12):24015–24036CrossRef
Zurück zum Zitat Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273CrossRef Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273CrossRef
Zurück zum Zitat Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35(4):269–279CrossRef Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35(4):269–279CrossRef
Zurück zum Zitat Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publisher, DordrechtCrossRef Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publisher, DordrechtCrossRef
Zurück zum Zitat Cappa F, Rutqvist J (2011a) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5(2):336–346CrossRef Cappa F, Rutqvist J (2011a) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5(2):336–346CrossRef
Zurück zum Zitat Cappa F, Rutqvist J, Yamamoto K (2009) Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan. J Geophys Res Solid Earth (1978–2012) 114(B10). doi:10.1029/2009JB006398 Cappa F, Rutqvist J, Yamamoto K (2009) Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan. J Geophys Res Solid Earth (1978–2012) 114(B10). doi:10.​1029/​2009JB006398
Zurück zum Zitat Castelletto N, Gambolati G, Teatini P (2013a) Geological CO2 sequestration in multi-compartment reservoirs: geomechanical challenges. J Geophys Res Solid Earth 118(5):2417–2428CrossRef Castelletto N, Gambolati G, Teatini P (2013a) Geological CO2 sequestration in multi-compartment reservoirs: geomechanical challenges. J Geophys Res Solid Earth 118(5):2417–2428CrossRef
Zurück zum Zitat Castelletto N, Teatini P, Gambolati G, Bossie-Codreanu D, Vincké O, Daniel JM, Battistelli A, Marcolini M, Donda F, Volpi V (2013b) Multiphysics modeling of CO2 sequestration in a faulted saline formation in Italy. Adv Water Resour 62:570–587CrossRef Castelletto N, Teatini P, Gambolati G, Bossie-Codreanu D, Vincké O, Daniel JM, Battistelli A, Marcolini M, Donda F, Volpi V (2013b) Multiphysics modeling of CO2 sequestration in a faulted saline formation in Italy. Adv Water Resour 62:570–587CrossRef
Zurück zum Zitat Celia MA, Bachu S, Nordbotten JM, Gasda SE, Dahle HK (2005) Quantitative estimation of CO2 leakage from geological storage: analytical models, numerical models and data needs. 7th International Conference on Greenhouse Gas Control Technologies. (GHGT-7), September 5–9, 2004, Vancouver, Canada, v.I, pp 663–672 Celia MA, Bachu S, Nordbotten JM, Gasda SE, Dahle HK (2005) Quantitative estimation of CO2 leakage from geological storage: analytical models, numerical models and data needs. 7th International Conference on Greenhouse Gas Control Technologies. (GHGT-7), September 5–9, 2004, Vancouver, Canada, v.I, pp 663–672
Zurück zum Zitat Chiaramonte L, Zoback MD, Friedmann J, Stamp V (2008) Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization. Environ Geol 54(8):1667–1675 Chiaramonte L, Zoback MD, Friedmann J, Stamp V (2008) Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization. Environ Geol 54(8):1667–1675
Zurück zum Zitat Chu S (2009) Carbon capture and sequestration. Science 325(5948):1599CrossRef Chu S (2009) Carbon capture and sequestration. Science 325(5948):1599CrossRef
Zurück zum Zitat COMSOL 4.3b (2013) COMSOL multiphysics user’s guide, version 4.3b COMSOL 4.3b (2013) COMSOL multiphysics user’s guide, version 4.3b
Zurück zum Zitat Coussy O (2004) Poromechanics. John Wiley, Chichester, UK Coussy O (2004) Poromechanics. John Wiley, Chichester, UK
Zurück zum Zitat Dean RH, Gai S, Stone CM, Minkoff SE (2006) A comparison of techniques for coupling porous flow and geomechanics. Soc Petrol Eng J 11:132–140 Dean RH, Gai S, Stone CM, Minkoff SE (2006) A comparison of techniques for coupling porous flow and geomechanics. Soc Petrol Eng J 11:132–140
Zurück zum Zitat Giorgis T, Carpita M, Battistelli A (2007) 2D modeling of salt precipitation during the injection of dry CO2 in a depleted gas reservoir. Energy Convserv Manag 48(6):1816–1826CrossRef Giorgis T, Carpita M, Battistelli A (2007) 2D modeling of salt precipitation during the injection of dry CO2 in a depleted gas reservoir. Energy Convserv Manag 48(6):1816–1826CrossRef
Zurück zum Zitat Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350CrossRef Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350CrossRef
Zurück zum Zitat Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652CrossRef Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652CrossRef
Zurück zum Zitat IEA (2009) CO2 emissions from fuel combustion highlights. International Energy Agency, Paris IEA (2009) CO2 emissions from fuel combustion highlights. International Energy Agency, Paris
Zurück zum Zitat IEA (2012) Energy technology perspectives. International Energy Agency, Paris IEA (2012) Energy technology perspectives. International Energy Agency, Paris
Zurück zum Zitat IPCC (2000) Special report on emissions scenarios. Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge IPCC (2000) Special report on emissions scenarios. Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge
Zurück zum Zitat Kanamori H (1977) The energy released by great earthquakes. J Geophys Res 82(20):2981–2988CrossRef Kanamori H (1977) The energy released by great earthquakes. J Geophys Res 82(20):2981–2988CrossRef
Zurück zum Zitat Mazzoldi A, Rinaldi AP, Borgia A, Rutqvist J (2012) Induced seismicity within geological carbon sequestration projects: maximum earthquake magnitude and leakage potential from undetected faults. Int J Greenh Gas Control 10:434–442CrossRef Mazzoldi A, Rinaldi AP, Borgia A, Rutqvist J (2012) Induced seismicity within geological carbon sequestration projects: maximum earthquake magnitude and leakage potential from undetected faults. Int J Greenh Gas Control 10:434–442CrossRef
Zurück zum Zitat Miller SA, Nur A, Olgaard DL (1996) Earthquakes as a coupled shear stress-high pore pressure dynamical system. Geophys Res Lett 23(2):197–200CrossRef Miller SA, Nur A, Olgaard DL (1996) Earthquakes as a coupled shear stress-high pore pressure dynamical system. Geophys Res Lett 23(2):197–200CrossRef
Zurück zum Zitat NETL (2008) Carbon sequestration atlas of the United States of America and Canada, 2nd edn. National Energy Technology Laboratory, U.S. Department of Energy, USA NETL (2008) Carbon sequestration atlas of the United States of America and Canada, 2nd edn. National Energy Technology Laboratory, U.S. Department of Energy, USA
Zurück zum Zitat NETL (2013) Best practices site screening, selection, and initial characterization for storage of CO2 in deep geologic formations. National Energy Technology Laboratory, U.S. Department of Energy, USA NETL (2013) Best practices site screening, selection, and initial characterization for storage of CO2 in deep geologic formations. National Energy Technology Laboratory, U.S. Department of Energy, USA
Zurück zum Zitat Nicot J-P, Duncan IJ (2012) Common attributes of hydraulic-fractured oil and gas production and CO2 geological sequestration. Greenh Gas Sci Technol 2:352–368CrossRef Nicot J-P, Duncan IJ (2012) Common attributes of hydraulic-fractured oil and gas production and CO2 geological sequestration. Greenh Gas Sci Technol 2:352–368CrossRef
Zurück zum Zitat Nicot JP, Oldenburg CM, Houseworth JE, Choi JW (2013) Analysis of potential leakage pathways at the Cranfield, MS, U.S.A., CO2 sequestration site. Int J Greenh Gas Control 18:388–400CrossRef Nicot JP, Oldenburg CM, Houseworth JE, Choi JW (2013) Analysis of potential leakage pathways at the Cranfield, MS, U.S.A., CO2 sequestration site. Int J Greenh Gas Control 18:388–400CrossRef
Zurück zum Zitat Nield DA, Bejan A (2006) Convection in porous media. Springer, Berlin Nield DA, Bejan A (2006) Convection in porous media. Springer, Berlin
Zurück zum Zitat NRC (2013) Induced seismicity potential in energy technologies. National Research Council, National Academies Press, Washington, DC, p 300 NRC (2013) Induced seismicity potential in energy technologies. National Research Council, National Academies Press, Washington, DC, p 300
Zurück zum Zitat Rinaldi AP, Rutqvist J, Cappa F (2014) Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. Int J Greenh Gas Control 20:117–131CrossRef Rinaldi AP, Rutqvist J, Cappa F (2014) Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. Int J Greenh Gas Control 20:117–131CrossRef
Zurück zum Zitat Rutqvist J (2012) The geomechanics of CO2 storage in deep sedimentary formations. J Geotech Geol Eng 30:525–551CrossRef Rutqvist J (2012) The geomechanics of CO2 storage in deep sedimentary formations. J Geotech Geol Eng 30:525–551CrossRef
Zurück zum Zitat Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442CrossRef Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442CrossRef
Zurück zum Zitat Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conserv Manag 48:1798–1807CrossRef Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conserv Manag 48:1798–1807CrossRef
Zurück zum Zitat Rutqvist J, Vasco DW, Myer L (2009) Coupled reservoir-geomechanical analysis of CO2 injection at In Salah, Algeria. Energy Procedia 1(1):1847–1854CrossRef Rutqvist J, Vasco DW, Myer L (2009) Coupled reservoir-geomechanical analysis of CO2 injection at In Salah, Algeria. Energy Procedia 1(1):1847–1854CrossRef
Zurück zum Zitat Rutqvist J, Rinaldi AP, Cappa F, Moridis GJ (2013) Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. J Petrol Sci Eng 107:31–44CrossRef Rutqvist J, Rinaldi AP, Cappa F, Moridis GJ (2013) Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. J Petrol Sci Eng 107:31–44CrossRef
Zurück zum Zitat Sibson RH (1992) Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface. Earth Sci Rev Metamorph Fluids 32(1–2):141–144CrossRef Sibson RH (1992) Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface. Earth Sci Rev Metamorph Fluids 32(1–2):141–144CrossRef
Zurück zum Zitat Streit JE, Cox SF (2001) Fluid pressures at hypocenters of moderate to large earthquakes. J Geophys 106:2235–2243CrossRef Streit JE, Cox SF (2001) Fluid pressures at hypocenters of moderate to large earthquakes. J Geophys 106:2235–2243CrossRef
Zurück zum Zitat Van Noorden R (2010) Carbon sequestration: buried trouble. Nature 463(7283):871CrossRef Van Noorden R (2010) Carbon sequestration: buried trouble. Nature 463(7283):871CrossRef
Zurück zum Zitat Verdon JP, Kendall JM, Stork AL, Chadwick RA, White DJ, Bissell RC (2013) Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc Natl Acad Sci 110:E2762–E2771CrossRef Verdon JP, Kendall JM, Stork AL, Chadwick RA, White DJ, Bissell RC (2013) Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc Natl Acad Sci 110:E2762–E2771CrossRef
Zurück zum Zitat Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002 Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002
Zurück zum Zitat Wibberley CAJ, Shimamoto T (2005) Earthquake slip weakening and asperities explained by thermal pressurization. Nature 436(7051):689–692 Wibberley CAJ, Shimamoto T (2005) Earthquake slip weakening and asperities explained by thermal pressurization. Nature 436(7051):689–692
Zurück zum Zitat Zoback MD, Harjes HP (1997) Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J Geophys Res 102(B8):18418–18477 Zoback MD, Harjes HP (1997) Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J Geophys Res 102(B8):18418–18477
Metadaten
Titel
Numerical Simulation of Induced Seismicity in Carbon Capture and Storage Projects
verfasst von
Kimia Mortezaei
Farshid Vahedifard
Publikationsdatum
01.04.2015
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 2/2015
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-015-9859-7

Weitere Artikel der Ausgabe 2/2015

Geotechnical and Geological Engineering 2/2015 Zur Ausgabe