Skip to main content

Advertisement

Log in

Application of Bayesian networks for fire risk mapping using GIS and remote sensing data

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

This study estimates fire risk in Swaziland using geographic information system (GIS) and remote sensing data. Fire locations were identified in the study area from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire and burned area data for the period between April 2000 to December 2008 and January 2001 and December 2008, respectively. A total of thirteen biophysical and socio-economic explanatory variables were analyzed and processed using a Bayesian network (BN) and GIS to generate the fire risk maps. The interdependence of each of the factors was probabilistically determined using the expectation-maximization (EM) learning algorithm. The final probabilistic outputs were then used to classify the country into five fire risk zones for mitigation and management. Accuracy assessments and comparison of the fire risk maps indicate that the risk maps derived from the active fire and burned area data were 93.14 and 96.64% accurate, respectively, demonstrating sufficient agreement between the risk maps and the existing data. High fire risk areas are observed in the Highveld particularly plantation forests and grasslands and within the Lowveld sugarcane plantations. Land tenure and land cover are the dominant determinants of fire risk, the implications of which are discussed for fire management in Swaziland. Limitations of the data used and the modeling approach are also discussed including suggestions for improvements and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adlassnig, K., & Scheithauer, W. (1989). Performance evaluation of medical expert systems using ROC curves. Computers and Biomedical Research, 22(4), 297–313.

    Article  Google Scholar 

  • Alonso-Betanzos, A., Fontenla-Romero, O., Guijarro-Berdiñas, B., Hernández-Pereira, E., Canda, E. Jimenez, J., Luis Legido, J., Muñiz, S., Paz-Andrade, C., & Paz-Andrade, M. I. (2002). A neural network approach for forest fire risk estimation. In: F. van Harmelen, (Ed.), Proceedings of the 15th European Conference on Artificial Intelligence. ECAI’2002, Lyon, France, pp. 643–647.

  • Archibald, S., Roy, D. P., Van Wilgen, B. W., & Scholes, R. J. (2009). What limits fire?: An examination of drivers of burnt area in sub-equatorial Africa. Global Change Biology, 15(3), 613–630. doi:10.1111/j.1365-2486.2008.01754.x.

    Article  Google Scholar 

  • Bachmann, A., & Allgower, B. (2001). A consistent wildland fire risk terminology is needed. Fire Management Today, 61(4), 28–33.

    Google Scholar 

  • Chuvieco, E., & Kasischke, E. S. (2007). Remote sensing information for fire management and fire effects assessment. Journal of Geophysical Research, 112 (G01S90). doi:10.1029/2006JG000230.

  • Chuvieco, E., & Salas, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographic Information Systems, 10(3), 333–345. doi:10.1080/02693799608902082.

    Article  Google Scholar 

  • Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: Principles and practices (2nd ed.). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Daniel, B. K., Zapata-Rivera, J.-D., & McCalla, G. I. (2007). A Bayesian belief network approach for modeling complex domains. In A. A Mittal, A. Kassim, & T. Tan (Eds.), Bayesian network technologies: Applications and graphical models (pp. 13–51). Hershey: IGI Publishing.

    Google Scholar 

  • Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B39(1), 1–38.

    Google Scholar 

  • Dlamini, W. M. (2005). Fire situation in Swaziland. Proceedings of the 5th Southern Africa Fire Network (SAFNet) workshop: Towards Meeting Fire Management Challenges in Southern Africa, Mangochi, Malawi, pp. 24–26.

  • Dlamini, W. M. (2007). A review of the July 2007 Swaziland fire disaster using GIS and MODIS data. PositionIT, September/October 2007, 61–65.

  • Dlamini, W. M. (2009). Characterization of the July 2007 Swaziland fire disaster using satellite remote sensing and GIS. Applied Geography, 29(3), 299–307. doi:10.1016/j.apgeog.2008.10.007.

    Article  Google Scholar 

  • Dlamini, W. M. (2010). A Bayesian belief network analysis of factors influencing wildfire occurrence in Swaziland. Environmental Modelling & Software, 25(2), 199–208. doi:10.1016/j.envsoft.2009.08.002.

    Article  Google Scholar 

  • ESRI. (2008). ArcGIS: Release 9.3. Redlands, California: Environmental Systems Research Institute.

    Google Scholar 

  • Giglio, L., Csiszar, I., & Justice, C. O. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua MODIS sensors. Journal of Geophysical Research, 111(G02016), doi:10.1029/2005JG000142.

  • Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282.

    Article  Google Scholar 

  • Giglio, L., Loboda, T., Roy, D. P., Quayle, B., & Justice, C. O. (2009). An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 113(2), 408–420.

    Article  Google Scholar 

  • Goudie, A. S., & Price-Williams, D. (1983). The atlas of Swaziland. Lobamba: The Swaziland National Trust Commission Occasional Paper No. 4. Swaziland National Trust Commission.

    Google Scholar 

  • Grêt-Regamey, A., & Straub, D. (2006). Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Natural Hazards and Earth System Sciences, 6(6), 911–926.

    Article  Google Scholar 

  • Hardy, C. C. (2005). Wildland fire hazard and risk: Problems, definitions, and context. Forest Ecology and Management, 211(1–2), 73–82.

    Article  Google Scholar 

  • Henriksen, H. J., Rasmussen, P., Brandt, G., Bülow, Dv., & Jensen, F. V. (2007). Public participation modelling using Bayesian networks in management of groundwater contamination. Environmental Modelling and Software, 22(8), 1101–1113.

    Article  Google Scholar 

  • Hernandez-Leal, P. A., Arbelo, M., & Gonzalez-Calvo, A. (2006). Fire risk assessment using satellite data. Advances in Space Research, 37(4), 741–746. doi:10.1016/j.asr.2004.12.053.

    Article  Google Scholar 

  • Iliadis, L. S. (2005). A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environmental Modelling & Software, 20(5), 613–621.

    Article  Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database, http://srtm.csi.cgiar.org. Accessed 28 March 2009.

  • Jensen, F. V. (2001). Bayesian networks and decision graphs. New York: Springer.

    Google Scholar 

  • Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., et al. (2002). The MODIS fire products. Remote Sensing of the Environment, 83(1–2), 244–262.

    Article  Google Scholar 

  • Kaloudis, S., Tocatlidou, A., Lorentzos, N. A., Sideridis, A. B., & Karteris, M. (2005). Assessing wildfire destruction danger: A decision support system incorporating uncertainty. Ecological Modelling, 181(1), 25–38.

    Article  Google Scholar 

  • Korb, K., & Nicholson, A. E. (2004). Bayesian artificial intelligence. London: Chapman & Hall.

    Google Scholar 

  • Kraak, M., & Ormeling, F. (1996). Cartography, visualization of spatial data. Essex: Addison Wesley Longman Limited.

    Google Scholar 

  • Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19(2), 191–201.

    Article  Google Scholar 

  • Loboda, T., O’Neal, K. J., & Csiszar, I. (2007). Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sensing of Environment, 109(4), 429–442.

    Article  Google Scholar 

  • Lozano, F. J., Suárez-Seoane, S., Kelly, M., & Luis, E. (2008). A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sensing of Environment, 112(3), 708–719.

    Article  Google Scholar 

  • Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38(5), 921–931.

    Article  Google Scholar 

  • Marcot, B. G., Steventon, J. D., Sutherland, G. D., & McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Canadian Journal of Forestry Research, 36(12), 3063–3074.

    Article  Google Scholar 

  • Martínez, J., Vega-Garcia, C., & Chuvieco, E. (2009). Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), 1241–1252. doi:10.1016/j.jenvman.2008.07.005.

    Article  Google Scholar 

  • Matondo, J. I., Peter, G., & Msibi, K. M. (2004). Evaluation of the impact of climate change on hydrology and water resources in Swaziland: Part II. Physics and Chemistry of the Earth, 29(15–18), 1193–1202.

    Google Scholar 

  • McCann, R. K., Marcot, B. G., & Ellis, R. (2006). Bayesian belief networks: applications in ecology and natural resource management. Canadian Journal of Forestry Research, 36(12), 3053–3062.

    Article  Google Scholar 

  • Melching, C. S. (1995). Reliability estimation. In V. P. Singh (Ed.), Computer models of watershed hydrology (pp. 69–118). Highlands Ranch, Colorado: Water Resources Publication.

    Google Scholar 

  • Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4), 283–298.

    Article  Google Scholar 

  • Neapolitan, R. (2003). Learning Bayesian networks. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Norsys Software Corporation. (2008). Netica version 4.10. http://www.norsys.com. Accessed 23 April 2009.

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo: Kaufmann.

    Google Scholar 

  • Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K., & Hart, B. T. (2007). Parameterisation and evaluation of a Bayesian belief network for use in an ecological risk assessment. Environmental Modelling & Software, 22(8), 1140–1152.

    Article  Google Scholar 

  • Preisler, H. K., Brillinger, D. R., Burgan, R. E., & Benoit, J. W. (2004). Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13(2), 133–142.

    Article  Google Scholar 

  • Pyne, S. J., Goldammer, J., de Ronde, C., Geldenhuys, C. J., Bond, W. J., & Trollope, S. W. (2004). Introduction. In J. G. Goldammer & C. de Ronde (Eds.), Wildland fire management handbook for Sub-Sahara Africa (pp. 1–10). Freiburg: Global Fire Monitoring Centre (GFMC).

    Google Scholar 

  • Qu, J. J., Wand, W., Dasgupta, S., & Hao, X. (2008). Active fire monitoring and fire danger potential detection from space: A review. Frontiers of Earth Science in China, 2(4), 479–486. doi:10.1007/s11707-008-0044-7.

    Article  Google Scholar 

  • Remmelzvaal, A. (1993). Physiographic Map of Swaziland, Scale 1:250,000. FAO/UNDP/GOS Land Use Planning for Rational Utilization of Land and Water Resources Project SWA/89/001. Field Doc. 41, Mbabane.

  • Roques, K. G., O’Connor, T. G., & Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38(2), 268–280.

    Article  Google Scholar 

  • Roy, D. P., Boschetti, L., Justice, C. O., & Jua, J. (2008). The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment, 112(9), 3690–3707.

    Article  Google Scholar 

  • Roy, D. P., Jin, Y., Lewis, P. E., & Justice, C. O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97(2), 137–162.

    Article  Google Scholar 

  • Smith, R., Goodman, P., & Matthews, W. (2006). Systematic conservation planning: A review of perceived limitations and an illustration of the benefits, using a case study from Maputaland, South Africa. Oryx, 40(4), 400–410.

    Article  Google Scholar 

  • Spiegelhalter, D. J., Dawid, A. D., Lauritzen, S. L., & Cowell, R. G. (1993). Bayesian analysis in expert systems. Statistical Science, 8(3), 219–283.

    Article  Google Scholar 

  • Sweet, R. J., & Khumalo, S. (1994). Range resources and grazing potentials in Swaziland. Mbabane: Ministry of Agriculture and Cooperatives/United Nations Development Programme.

    Google Scholar 

  • Taroni, F., Biedermann, A., Gabolino, P., & Aitken, C. G. G. (2004). A general approach to Bayesian belief networks for the interpretation of evidence. Forensic Science International, 139(1), 5–16.

    Article  Google Scholar 

  • Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modeling. Ecological Modelling, 203(3–4), 312–318.

    Article  Google Scholar 

  • Van Wilgen, B. W., & Scholes, R. J. (1997). The vegetation and fire regimes of Southern hemisphere Africa. In B. W. van Wilgen, M. O. Andreae, J. G. Goldammer, & J. A. Lindesay (Eds.), Fire in southern African Savannas: Ecological and atmospheric perspectives (pp. 27–43). Johannesburg: Witwatersrand University Press.

    Google Scholar 

  • Vasilakos, C., Kalabokidis, K., Hatzopoulos, J., Kallos, G., & Matsinos, Y. (2007). Integrating new methods and tools in fire danger rating. International Journal of Wildland Fire, 16(3), 306–316.

    Article  Google Scholar 

Download references

Acknowledgments

The complementary license for the Netica software was provided by Norsys Software Corporation with the help of Brent Boerlage and Jennie Yendall. The active fire and burned area data are distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the US Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (lpdaac.usgs.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wisdom Mdumiseni Dlamini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dlamini, W.M. Application of Bayesian networks for fire risk mapping using GIS and remote sensing data. GeoJournal 76, 283–296 (2011). https://doi.org/10.1007/s10708-010-9362-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-010-9362-x

Keywords

Navigation