Skip to main content
Log in

Geospatial analysis requires a different way of thinking: the problem of spatial heterogeneity

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

Geospatial analysis is very much dominated by a Gaussian way of thinking, which assumes that things in the world can be characterized by a well-defined mean, i.e., things are more or less similar in size. However, this assumption is not always valid. In fact, many things in the world lack a well-defined mean, and therefore there are far more small things than large ones. This paper attempts to argue that geospatial analysis requires a different way of thinking—a Paretian way of thinking that underlies skewed distribution such as power laws, Pareto and lognormal distributions. I review two properties of spatial dependence and spatial heterogeneity, and point out that the notion of spatial heterogeneity in current spatial statistics is only used to characterize local variance of spatial dependence. I subsequently argue for a broad perspective on spatial heterogeneity, and suggest it be formulated as a scaling law. I further discuss the implications of Paretian thinking and the scaling law for better understanding of geographic forms and processes, in particular while facing massive amounts of social media data. In the spirit of Paretian thinking, geospatial analysis should seek to simulate geographic events and phenomena from the bottom up rather than correlations as guided by Gaussian thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References:

  • Anderson, C. (2006). The long tail: Why the future of business is selling less of more. New York: Hyperion.

    Google Scholar 

  • Anselin, L. (1989). What is special about spatial data: Alternative perspectives on spatial data analysis. Santa Barbara, CA: National Center for Geographic Information and Analysis.

    Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27, 93–115.

    Article  Google Scholar 

  • Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Springer.

    Book  Google Scholar 

  • Barabási, A. (2010). Bursts: The hidden pattern behind everything we do. Boston, Massachusetts: Dutton Adult.

    Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  Google Scholar 

  • Batty, M., Carvalho, R., Hudson-Smith, A., Milton, R., Smith, D., & Steadman, P. (2008). Scaling and allometry in the building geometries of Greater London. The European Physical Journal B, 63(3), 303–314.

    Article  Google Scholar 

  • Batty, M., & Longley, P. (1994). Fractal cities: A geometry of form and function. London: Academic Press.

    Google Scholar 

  • Benguigui, L., & Czamanski, D. (2004). Simulation analysis of the fractality of cities. Geographical Analysis, 36(1), 69–84.

    Article  Google Scholar 

  • Blumenfeld-Lieberthal, E., & Portugali, J. (2010). Network cities: A complexity-network approach to urban dynamics and development. In B. Jiang & X. Yao (Eds.), Geospatial analysis of urban structure and dynamics (pp. 77–90). Berlin: Springer.

    Chapter  Google Scholar 

  • Bonner, J. T. (2006). Why size matters: From bacteria to blue whales. Princeton: Princeton University Press.

    Google Scholar 

  • Brockmann, D., Hufnage, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439, 462–465. http://www.nature.com/nature/journal/v439/n7075/full/nature04292.html.

    Article  Google Scholar 

  • Carvalho, R., & Penn, A. (2004). Scaling and universality in the micro-structure of urban space. Physica A, 332, 539–547.

    Article  Google Scholar 

  • Chen, Y. (2009). Spatial interaction creates period-doubling bifurcation and chaos of urbanization. Chaos, Solitons & Fractals, 42(3), 1316–1325.

    Article  Google Scholar 

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  Google Scholar 

  • Cliff, A. D., & Ord, J. K. (1969). The problem of spatial autocorrelation. In A. J. Scott (Ed.), London papers in regional science (pp. 25–55). London: Pion.

    Google Scholar 

  • Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Washington, DC: Brookings Institution Press.

    Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. Chichester: Wiley.

    Google Scholar 

  • Getis, A., & Ord, J. K. (1992). The analysis of spatial association by distance statistics. Geographical Analysis, 24(3), 189–206.

    Article  Google Scholar 

  • Gonzalez, M., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453, 779–782.

    Article  Google Scholar 

  • Goodchild, M. (2004). The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers, 94(2), 300–303.

    Article  Google Scholar 

  • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.

    Article  Google Scholar 

  • Goodchild, M. F., & Mark, D. M. (1987). The fractal nature of geographic phenomena. Annals of the Association of American Geographers, 77(2), 265–278.

    Article  Google Scholar 

  • Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Berlin: Springer.

    Book  Google Scholar 

  • Guimerà, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences of the United States of America, 102(22), 7794–7799.

    Article  Google Scholar 

  • Hack J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 294-B, 41–94.

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins: Hydrological approach to quantitative morphology. Bulletin of the Geographical Society of America, 56(3), 275–370.

    Article  Google Scholar 

  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190.

    Google Scholar 

  • Jiang, B. (2009). Street hierarchies: A minority of streets account for a majority of traffic flow. International Journal of Geographical Information Science, 23(8), 1033–1048.

    Article  Google Scholar 

  • Jiang, B. (2013a). Head/tail breaks: A new classification scheme for data with a heavy-tailed distribution. The Professional Geographer, 65(3), 482–494.

    Article  Google Scholar 

  • Jiang, B. (2013b). The image of the city out of the underlying scaling of city artifacts or locations. Annals of the Association of American Geographers, 103(6), 1552–1566.

    Article  Google Scholar 

  • Jiang, B., & Jia, T. (2011). Zipf’s law for all the natural cities in the United States: A geospatial perspective. International Journal of Geographical Information Science, 25(8), 1269–1281.

    Article  Google Scholar 

  • Jiang, B., & Liu, X. (2012). Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information. International Journal of Geographical Information Science, 26(2), 215–229.

    Article  Google Scholar 

  • Jiang, B., & Miao, Y. (2014). The evolution of natural cities from the perspective of location-based social media. The University of Gävle working paper. Gävle, Sweden.

  • Jiang, B., & Yin, J. (2013). Ht-index for quantifying the fractal or scaling structure of geographic features. Annals of the Association of American Geographers,. doi:10.1080/00045608.2013.834239.

    Google Scholar 

  • Jiang, B., Yin, J., & Zhao, S. (2009). Characterizing human mobility patterns in a large street network. Physical Review E, 80(2), 021136.

    Article  Google Scholar 

  • Koch, R. (1999). The 80/20 Principle: The secret to achieving more with less. New York: Crown Business.

    Google Scholar 

  • Krugman, P. (1996). The Self-Organizing Economy. Cambridge, Massachusetts: Blackwell.

  • Kyriakidou, V., Michalakelis, C., & Varoutas, D. (2011). Applying Zipf’s power law over population density and growth as network deployment indicator. Journal of Service Science and Management, 4(2), 132–140.

    Article  Google Scholar 

  • Lämmer, S., Gehlsen, B., & Helbing, D. (2006). Scaling laws in the spatial structure of urban road networks. Physica A, 363(1), 89–95.

    Article  Google Scholar 

  • Lin, Y. (2013). A comparison study on natural and head/tail breaks involving digital elevation models. Bachelor Thesis at University of Gävle, Sweden.

  • Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775), 636–638.

    Google Scholar 

  • Mandelbrot, B. B. (1982). The fractal geometry of nature. San Francisco: W. H. Freeman.

    Google Scholar 

  • Mandelbrot, B. B., & Hudson, R. L. (2004). The (mis)behavior of markets: A fractal view of risk, ruin and reward. New York: Basic Books.

    Google Scholar 

  • Maritan, A., Rinaldo, A., Rigon, R., Giacometti, A., & Rodríguez-Iturbe, I. (1996). Scaling laws for river networks. Physical Review E, 53(2), 1510–1515.

    Article  Google Scholar 

  • Mayer-Schonberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. New York: Eamon Dolan/Houghton Mifflin Harcourt.

    Google Scholar 

  • McKelvey, B., & Andriani, P. (2005). Why Gaussian statistics are mostly wrong for strategic organization. Strategic Organization, 3(2), 219–228.

    Article  Google Scholar 

  • Montello, D. R. (2001). Scale in geography. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social & behavioral sciences (pp. 13501–13504). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Newman, M. (2011). Complex systems: A survey. http://arxiv.org/abs/1112.1440.

  • Pareto, V. (1897). Cours d’économie politique. Lausanne: Ed. Rouge.

    Google Scholar 

  • Pelletier, J. D. (1999). Self-organization and scaling relationships of evolving river networks. Journal of Geophysical Research, 104(B4), 7359–7375.

    Article  Google Scholar 

  • Pumain, D. (2006). Hierarchy in natural and social sciences. Dordrecht: Springer.

    Book  Google Scholar 

  • Salingaros, N. A., & West, B. J. (1999). A universal rule for the distribution of sizes. Environment and Planning B: Planning and Design, 26(6), 909–923.

    Article  Google Scholar 

  • Schaefer, J. A., & Mahoney, A. P. (2003). Spatial and temporal scaling of population density and animal movement: A power law approach. Ecoscience, 10(4), 496–501.

    Google Scholar 

  • Schroeder, M. (1991). Chaos, fractals, power laws: Minutes from an infinite paradise. New York: Freeman.

    Google Scholar 

  • Taleb, N. N. (2007). The Black Swan: The impact of the highly improbable. London: Allen Lane.

    Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), 234–240.

    Article  Google Scholar 

  • Wu, J., & Li, H. (2006). Concepts of scale and scaling. In J. Wu, K. B. Jones, H. Li, & O. L. Loucks (Eds.), Scaling and uncertainty analysis in ecology (pp. 3–15). Berlin: Springer.

    Chapter  Google Scholar 

  • Zipf, G. K. (1949). Human behavior and the principles of least effort. Cambridge, MA: Addison Wesley.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous referees and the editor Daniel Z. Sui for their valuable comments. However, any shortcoming remains the responsibility of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B. Geospatial analysis requires a different way of thinking: the problem of spatial heterogeneity. GeoJournal 80, 1–13 (2015). https://doi.org/10.1007/s10708-014-9537-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-014-9537-y

Keywords

Navigation