Skip to main content

Advertisement

Log in

Effectiveness of in situ and ex situ conservation of crop diversity. What a Phaseolus vulgaris L. landrace case study can tell us

  • Original Research
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The effectiveness of in situ (on-farm) and ex situ conservation strategies to maintain total genetic diversity was assessed in a threatened Phaseolus vulgaris L. landrace. Farmer seed lots (subpopulations) were sampled initially and then after in situ and ex situ multiplication (two locations). The number of plants used in the ex situ multiplications (120) was much larger than that normally used in germplasm bank procedures and the farmer seed lots were kept separate. In situ, the landrace was multiplied by each farmer with the usual population size. Eighty plants from the initial population, the in situ and the two ex situ multiplications were individually tested using 26 microsatellite markers. Most of the genetic parameters showed a consistent decline in the ex situ populations compared with the in situ population, with a notable loss of less frequent alleles. The differentiation among the farmer subpopulations increased when the multiplication took place outside of the adaptation area. Although 120 plants were multiplied in each ex situ cycle, a bottleneck effect was present. In addition, tests for neutrality detected three loci that are involved in pathogen response and are potentially under selective effects. The diversity conservation and the management practices of autogamous landrace crops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altoveros NC, Rao R (1998) Analysis of information on seed germplasm regeneration practices. In: Engels JMM, Rao RamanthaR (eds) Regeneration of seed crops and their relatives. Proceedings of a consultation meeting 4–7 December 1995. ICRISAT, Hyderabad, India

    Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond Ser B Biol Sci 263:1619–1626

    Article  Google Scholar 

  • Beebe S, Skroch PW, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Article  Google Scholar 

  • Beebe S, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Article  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from cultivated Andean X wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Börner A, Chebotar S, Korzun V (2000) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet 100:494–497

    Article  Google Scholar 

  • Brush SB (2000) The issues of in situ conservation of crop genetic resources. In: Brush SB (ed) Genes in the field. On farm conservation of crop diversity. IPGRI, Rome, IDRC, Ottawa, and Lewis Publishers, Boca Raton

    Google Scholar 

  • Caballero A (1994) Developments in the prediction of effective population size. Heredity 73:657–679

    Article  PubMed  Google Scholar 

  • Campbell D, Bernatchez L (2004) Genomic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol Biol Evol 21:945–956

    Article  CAS  PubMed  Google Scholar 

  • Chebotar S, Röder MS, Korzun V, Saal B, Weber WE, Börner A (2003) Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet 107:469–1476

    Article  Google Scholar 

  • Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statistics. Evolution 47:855–863

    Article  Google Scholar 

  • Crossa J (1989) Methodologies for estimating the sample size required for conservation of outbreeding crops. Theor Appl Genet 77:153–161

    Google Scholar 

  • Crossa J, Vencovsky R (1994) Implications of the variance effective population size on the genetic conservation of monoecious species. Theor Appl Genet 89:936–942

    Google Scholar 

  • Dieringer D, Schlötterer C (2002) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–24

    Google Scholar 

  • Escalante A, Coello G, Eguiarte LE, Piñero D (1994) Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). Amer J Bot 81:1096–1103

    Article  Google Scholar 

  • Frankham R (1995) Effective population-size adult-population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Goldringer I, Enjalbert J, Raquin AL, Brabant P (2001) Strong selection in wheat population during ten generation of dynamic management. Genet Sel Evol 33(suppl1):S441–S463

    Google Scholar 

  • Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817

    Article  PubMed  Google Scholar 

  • Gomez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2005) Comparative study of common bean (Phaseolus vulgaris L.) landraces conserved ex situ in genebanks and in situ by farmers. Gen Res Crop Evol 52:371–380

    Article  CAS  Google Scholar 

  • Guarino L, Rao RR, Reid R (1995) Collecting plant genetic diversity, technical guidelines. CAB International, Wallingford

    Google Scholar 

  • IPCC (2007) Fourth assessment report climate change 2007: synthesis report. Intergovernmental Panel on Climate Change, Geneva, Switzerland

    Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Lawrence MJ (2002) A comprehensive collection and regeneration strategy for ex situ conservation. Gen Res Crop Evol 00:1–11

    Google Scholar 

  • Li Q, Xu Z, He T (2002) Ex situ genetic conservation of endangered Vatica guangxiensis (Dipterocarpaceae) in China. Biol Conserv 106:156

    Article  Google Scholar 

  • Li Q, He T, Xu Z (2005) Genetic evaluation of the efficacy of in situ and ex situ conservation of Parashorea chinensis (Dipterocarpaceae) in southwestern China. Biochem Genet 43:387–406

    Article  CAS  PubMed  Google Scholar 

  • Lima VM, Magioli C, de A Gerhardt LB, Tarré E, Menezes RMG, Sachetto-Martins G, Pinheiro MM (2002) Bean class IV chitinase promoter is modulated during plant development and under abiotic stress. Plant Physiol 116:512–521

  • Margis-Pinheiro M, Marivet J, Burkard G (1994) Bean class IV chitinase gene: structure, developmental expression and induction by heat stress. Plant Sci 98:163–173

    Article  CAS  Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (eds) Genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 53–80

    Google Scholar 

  • Masi P, Zeuli PL, Donini P (2003) Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L.). Mol Breed 11:303–313

    Article  CAS  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA), version 1.3. A windows program for the analysis of allozyme and molecular population genetic data. Distributed by the author

  • Negri V, Tosti N (2002) Phaseolus genetic diversity maintained on farm in Central Italy. Gen Res Crop Evol 49:511–520

    Article  Google Scholar 

  • Negri V, Maxted N, Vetelainen M (2009) European landrace conservation: an introduction. In: Vetelainen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin No. 15, Bioversity International, Bioversity International publication, Rome, Italy, pp 1–22, ISBN 978-92-9043-805-2

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    CAS  PubMed  Google Scholar 

  • Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare subsp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2005) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Australian National University, Camberra, http://www.anu.edu.au/BoZo/GenAlEx

  • Peters NK, Frost JW, Long SR (1986) A plant flavone luteolin induces expression in Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Doyle JJ, McNicol JW, Tingey SV, Rafalski AJ (1996) Genepool variation in genus Glycine subgenus soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics 144:793–803

    CAS  PubMed  Google Scholar 

  • Raquin AL, Depaulis F, Lambert A, Galic N, Brabant P, Goldringer I (2008) Experimental estimation of mutation rates in a wheat population with a gene genealogy approach. Genetics 179:2195–2211

    Article  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rhoné B, Remoué C, Galic N, Goldringer I, Bonnin I (2008) Insight into the genetic bases of climatic adaptation in experimentally evolving wheat populations. Mol Ecol 17:930–943

    Article  PubMed  Google Scholar 

  • Rice EB, Smith ME, Mitchell SE, Kresovich S (2006) Conservation and change: a comparison of in situ and ex situ conservation of Jala maize germplasm. Crop Sci 46:428–436

    Article  CAS  Google Scholar 

  • Serrano AR, Del Castillo JL, Novo JJ, Ocaña AF, Rodríguez MVG (2007) Chitinase and peroxidase activities in sunflower hypocotyls: effects of BTH and inoculation with Plasmopara halstedii. Plant Biol 51:149–152

    Article  CAS  Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and Phaseolus coccineus L. landraces in central Italy. Plant Breed 124:464–472

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman WH and Co, San Francisco

    Google Scholar 

  • Soleri D, Smith SE (1995) Morphological and phenological comparisons of two Hopi maize varieties conserved in situ and ex situ. Econ Bot 49:56–77

    Google Scholar 

  • Spagnoletti Zeuli L, Sergio L, Perrino P (1995) Changes in the genetic structure of wheat germplasm accessions during seed rejuvenation. Plant Breed 114:193–198

    Article  Google Scholar 

  • Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688

    Article  CAS  PubMed  Google Scholar 

  • Tin HQ, Berg T, Bjørnstad Å (2001) Diversity and adaptation in rice varieties under static (ex situ) and dynamic (in situ) management. A case study in the Mekong Delta, Vietnam. Euphytica 122:491–502

    Article  Google Scholar 

  • Tiranti B (2005) Varietà locali italiane di Phaseolus vulgaris L.: livelli di diversità, struttura genetica e strategie di conservazione [Italian landraces of P. vulgaris L.: diversity, genetic structure and conservation strategies]. PhD thesis, University of Perugia, p 324

  • Tiranti B, Negri V (2007) Selective micro-environmental effects play a role in shaping genetic diversity and structure in a Phaseolus vulgaris L. landrace: implications for on-farm conservation. Mol Ecol 16:4942–4955

    Article  CAS  PubMed  Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076

    Article  PubMed  Google Scholar 

  • Vencovsky R, Crossa J (1999) Variance effective population size under mixed self and random mating with applications to genetic conservation of species. Crop Sci 39:1282–1294

    Article  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823

    CAS  PubMed  Google Scholar 

  • Vitalis R, Dawson K, Boursot P, Belkhir K (2003) DetSel 1.0: a computer program to detect markers responding to selection. J Hered 94:429–431

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    CAS  PubMed  Google Scholar 

  • Weir BS, Cockeram CC (1984) Estimating F-statistic for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wells WC, Isom WH, Waines JG (1988) Outcrossing rates of six common bean lines. Crop Sci 28:177–178

    Article  Google Scholar 

  • Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

  • Zizumbo-Villarreal D, Colunga-Garcia Marin P, De la Cruz EP, Delgado PV, Gepts P (2005) Population structure and evolutionary dynamics of wild-weedy-domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Italian Ministry of University and Scientific Research (PRIN project n. 9907384522_006 ‘Evaluation of “species-environment” systems for “in situ” conservation of genetic resources of cultivated species. In situ conservation of a self pollinating species. Evaluation of the system: landraces of Phaseolus vulgaris in a mountain area’). Thanks are due to the anonymous referees for useful suggestions and to Dr. I. Goldringer (INRA, Moulon) and Dr. P. E. Jorde (CEES, Oslo) for discussing the Ne estimating methods with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Negri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negri, V., Tiranti, B. Effectiveness of in situ and ex situ conservation of crop diversity. What a Phaseolus vulgaris L. landrace case study can tell us. Genetica 138, 985–998 (2010). https://doi.org/10.1007/s10709-010-9485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9485-5

Keywords

Navigation