Skip to main content
Log in

Determinantal representations of smooth cubic surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For every smooth (irreducible) cubic surface S we give an explicit construction of a representative for each of the 72 equivalence classes of determinantal representations. Equivalence classes (under GL3 × GL3 action by left and right multiplication) of determinantal representations are in one to one correspondence with the sets of six mutually skew lines on S and with the 72 (two-dimensional) linear systems of twisted cubic curves on S. Moreover, if a determinantal representation M corresponds to lines (a 1,...,a 6) then its transpose M t corresponds to lines (b 1,...,b 6) which together form a Schläfli’s double-six \(a_1\ldots a_6 \choose b_1\ldots b_6\) . We also discuss the existence of self-adjoint and definite determinantal representation for smooth real cubic surfaces. The number of these representations depends on the Segre type F i . We show that a surface of type F i , i = 1,2,3,4 has exactly 2(i−1) nonequivalent self-adjoint determinantal representations none of which is definite, while a surface of type F 5 has 24 nonequivalent self-adjoint determinantal representations, 16 of which are definite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville A. (2000). Determinantal hypersurfaces. Michigan Math. J. 48: 39–63

    Article  MATH  Google Scholar 

  2. Brundu M. and Logar A. (1998). Parametrization of the orbits of cubic surfaces. Transform Groups 3(3): 209–239

    Article  MATH  Google Scholar 

  3. Brundu, M., Logar A.: Classification of cubic surfaces with computational methods. Quaderni Matematici, Serie II, No. 375, Dept. of Math., Univ. of Triest (1996)

  4. Cayley A. (1849). On the triple tangent planes of surfaces of the third order. Cambridge and Dublin Math J 4: 118–138

    Google Scholar 

  5. Clebsch A. (1866). Die Geometrie auf den Flächen dritter Ordnung. J. f. d. Reine Ang Math 65: 359–380

    Google Scholar 

  6. Cook R.J. and Thomas A.D. (1979). Line bundles and homogeneous matrices. Quat J Math Oxford Ser (2) 30: 423–429

    Article  MATH  Google Scholar 

  7. Cremona L. (1868). Mémoire de géométrie pure sur les surfaces du troisiéme ordre. J des Mathématiques pures et appliquées 68: 1–133

    Google Scholar 

  8. Dickson L.E. (1921). Determination of all general homogeneous polynomials expressible as determinants with linear elements. Trans. Amer. Math. Soc. 22: 167–179

    Article  Google Scholar 

  9. Dixon A.C. (1900–1902). Note on the reduction of ternary quartic to a symmetrical determinant. Proc. Cambridge Phil. Soc. 2: 350–351

    Google Scholar 

  10. Dolgachev, I.V.: Luigi Cremona and cubic surfaces. In: Luigi Cremona (1830-1903). Convegno di Studi matematici, Istituto Lombardo, Accademia di Scienze e Lettere, Milano pp. 55–70 (2005)

  11. Dolgachev, I.V.: Topics in Classical Algebraic Geometry. Part I, www.math.lsa.umich.edu/idolga/ lecturenotes.html (2006)

  12. Geramita, A.: Lectures on the non-singular cubic surfaces in \({\mathbb{P}}^3\) . In The Curves Seminar at Queen’s. Vol. VI, Queen’s Papers in Pure and Applied Math. No. 83, Queen’s University, Kingston, Canada pp. A1–A99 (1989)

  13. Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133. Springer-Verlag (1992)

  14. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer-Verlag (1977)

  15. Henderson A. (1911). The 27 lines upon the Cubic Surface. Hafner Publishing, New York

    Google Scholar 

  16. Hilbert, D., Cohn-Vossen, S.: Geometry and Imagination. Chelsea Publishing (1952) (Reprinted in 1999 by AMS)

  17. Kollár, J., Smith, K.E., Corti, A.: Rational and Nearly Rational Varieties. Cambridge Studies in Advanced Mathematics, vol. 92. Cambridge University Press (2004)

  18. Košir T. (2003). The Cayley-Hamilton theorem and inverse problems for multiparameter systems. Lin. Alg. Appl 367: 155–163

    Article  Google Scholar 

  19. Livšic, M.S., Kravitsky, N., Markus, A.S., Vinnikov, V.: Theory of Commuting Nonselfadjoint Operators. Kluwer Academic Publishers (1995)

  20. Reid, M.: Undergraduate Algebraic Geometry. London Mathematical Society Student Texts, vol. 12. Cambridge University Press (1988)

  21. Room, T. G: The Geometry of Determinantal Loci. Cambridge University Press (1938)

  22. Schröter H. (1863). Nachweis der 27 Geraden auf der allgemeinen Oberfläche dritter Ordnung. J. f. d. Reine Ang. Math. 62: 265–280

    Google Scholar 

  23. Segre, B.: The Non-Singular Cubic Surfaces. Oxford University Press (1942)

  24. Shafarevich, I.R.: Basic Algebraic Geometry 1. Springer-Verlag (1994)

  25. Vinnikov V. (1986). Self-adjoint determinantal representations of real irreducible cubics. Oper Theory: Adv. Appl. 19: 415–442

    Google Scholar 

  26. Vinnikov V. (1989). Complete description of determinantal representations of smooth irreducible curves. Lin Alg Appl 125: 103–140

    Article  MATH  Google Scholar 

  27. Vinnikov V. (1993). Self-adjoint determinantal representations of real plane curves. Math. Anal. 296: 453–479

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaž Košir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, A., Košir, T. Determinantal representations of smooth cubic surfaces. Geom Dedicata 125, 115–140 (2007). https://doi.org/10.1007/s10711-007-9144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9144-x

Keywords

Mathematics Subject Classifications (2000)

Navigation