Skip to main content
Log in

Curvature-direction measures of self-similar sets

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We obtain fractal Lipschitz–Killing curvature-direction measures for a large class of self-similar sets \(F\) in \(\mathbb{R }^{d}\). Such measures jointly describe the distribution of normal vectors and localize curvature by analogues of the higher order mean curvatures of differentiable sub-manifolds. They decouple as independent products of the unit Hausdorff measure on \(F\) and a self-similar fibre measure on the sphere, which can be computed by an integral formula. The corresponding local density approach uses an ergodic dynamical system formed by extending the code space shift by a subgroup of the orthogonal group. We then give a remarkably simple proof for the resulting measure version under minimal assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bandt, C., Graf, S.: Self-similar sets. VII. A characterization of self-similar fractals with positive Hausdorff measure. Proc. Am. Math. Soc. 114(4), 995–1001 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Billingsley, P: Convergence of probability measures. In: Wiley Series in Probability and Statistics: Probability and Statistics, 2nd ed., Wiley, New York (1999) A Wiley-Interscience Publication

  3. Doob, J.L.: Measure theory, Graduate Texts in Mathematics, vol. 143. Springer, New York (1994)

    Book  Google Scholar 

  4. Falconer, K.J.: On the Minkowski measurability of fractals. Proc. Am. Math. Soc. 123(4), 1115–1124 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  6. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferry, S.: When \(\epsilon \)-boundaries are manifolds, Fund. Math. 90(3), 199–210 (1975/76)

  8. Fu, J.H.G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52(4), 1025–1046 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gatzouras, D.: Lacunarity of self-similar and stochastically self-similar sets. Trans. Am. Math. Soc. 352(5), 1953–1983 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Graf, S.: On Bandt’s tangential distribution for self-similar measures. Monatsh. Math. 120(3–4), 223–246 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. John, E.: Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kesseböhmer, M., Kombrink, S.: Fractal curvature measures and Minkowski content for one-dimensional self-conformal sets. Adv. Math. (2010), Arxiv 1012.5399 (to appear)

  13. Lapidus, M.L., Pomerance, C.: The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. Lond. Math. Soc. (3) 66(1), 41–69 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mauldin, R.D., Urbański, M.: Graph directed Markov systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, (2003)

  15. Pokorny, D.: On critical values of self-similar sets. Houston J. Math (to appear) (2011) Arxiv 1101.1219v3

  16. Rataj, J.: Convergence of total variation of curvature measures. Monatsh. Math. 153(2), 153–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rataj, J., Winter, S.: On volume and surface area of parallel sets. Indiana Univ. Math. J. 59(5), 1661–1685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rataj, J., Zähle, M.: Normal cycles of Lipschitz manifolds by approximation with parallel sets. Differ. Geom. Appl. 19(1), 113–126 (2003)

    Article  MATH  Google Scholar 

  19. Rataj, J., Zähle, M.: General normal cycles and Lipschitz manifolds of bounded curvature. Ann. Glob. Anal. Geom. 27(2), 135–156 (2005)

    Article  MATH  Google Scholar 

  20. Rataj, J., Zähle, M.: Curvature densities of self-similar sets. Indiana Univ. Math. J. (to appear) (2010) Arxiv 1009.6162

  21. Schneider, R.: Parallelmengen mit Vielfachheit und Steiner-Formeln. Geom. Dedic. 9(1), 111–127 (1980)

    Article  MATH  Google Scholar 

  22. Schief, A.: Separation properties for self-similar sets. Proc. Am. Math. Soc. 122(1), 111–115 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Klatt, M.A., Schaller, F.M., Hoffmann, M.J.F., Kleppmann, N., Armstrong, P., Inayat, A., Hug, D., Reichelsdorfer, M., Peukert, W., Schwieger, W., Mecke, K.: Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23(22–23), 2535–2553 (2011)

    Google Scholar 

  24. Winter, S.: Curvature measures and fractals. Diss. Math. (Rozprawy Mat.) 453, 66 (2008)

    Google Scholar 

  25. Winter, S.: Curvature bounds for neighborhoods of self-similar sets. Comment. Math. Univ. Carolin. 52(2), 205–226 (2011) Arxiv 1010.2032

    Google Scholar 

  26. Winter, S., Zähle, M.: Fractal curvature measures of self-similar sets. Adv. Geom. (2012) Arxiv 1007.0696

  27. Zähle, M.: Integral and current representation of Federer’s curvature measures. Arch. Math. (Basel) 46(6), 557–567 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zähle, M.: Lipschitz–Killing curvatures of self-similar random fractals. Trans. Am. Math. Soc. 363(5), 2663–2684 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Johannes Bohl.

Additional information

Both supported by grant DFG ZA 242/5-1. The first author has previously worked under the name Tilman Johannes Rothe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohl, T.J., Zähle, M. Curvature-direction measures of self-similar sets. Geom Dedicata 167, 215–231 (2013). https://doi.org/10.1007/s10711-012-9810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9810-5

Keywords

Mathematics Subject Classification (2000)

Navigation